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EFFICIENCY OF INTENSITY MEASURES FOR SEISMIC RESPONSE 

PREDICTION IN CLT BUILDINGS VIA DATA SCIENCE METHODS 

Sebastián Aedo Maluje1, Christian Málaga-Chuquitaype2, Jorge Macedo 

Escudero3, Farahnaz Soleimani4 

 

 
ABSTRACT: This paper investigates the influence of different ground-motion intensity measures on the seismic 

response of cross-laminated timber (CLT) buildings using advanced data science methods. To this end, 9 CLT buildings 

with different structural arrangements, such as the number of storeys and behaviour factors, are modelled and subjected 

to 1654 acceleration records through nonlinear response–history analysis. From these analyses, inter–storey drifts, floor 

accelerations, and storey shears are determined and used as engineering demand parameters (EDPs). Initially, regular 

regression analyses are conducted on the assembled EDPs to explore preliminary relationships between the EDPs and 

several intensity measures. Next, machine learning techniques are applied, using robust algorithms such as stepwise 

selection and Lasso analyses, where 50% of the data is utilised for training purposes and the remaining 50% for model 

validation. Eventually, the intensity measures which can properly predict the seismic response of each EDP are 

identified. 

KEYWORDS: Cross-laminated timber, machine learning, engineering demand parameter, ground-motion intensity 

measures. 

 

 

1 INTRODUCTION 123 

Advanced data science methodologies like machine 

learning techniques need more investigation, particularly 

in the field of structural engineering. In fact, with the 

amount of data collected nowadays not only from 

numerical analyses but also from structural monitoring, 

the prediction of structural and seismic responses can be 

significantly improved by finding new relationships and 

patterns that have not been thoroughly investigated yet. 

Throughout the last years, different research projects 

have developed initiatives to promote the design and 

construction of multi-storey cross-laminated timber 

buildings. One of the main precursor studies in this topic 

is the Construction System Fiemme project (SOFIE) [1], 

in which a series of full-scale experiments were 

conducted on a 7-storey CLT building. The results were 

compared to a 3D model, emphasising the high stiffness 

in-plane and load bearing capacity of the CLT walls and 

the key role played by the connectors in the seismic 

response of CLT buildings. 

Afterwards, several numerical studies on the seismic 

response of CLT multi-storey buildings have been 
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performed. For example, Pozza et. al. [2, 3] compared 

and tested the seismic behaviour of four different 

typologies of CLT walls and used these results to 

calibrate three-dimensional numerical models of a 3-

storey CLT building, evaluating the influence of these 

CLT walls on the behaviour factor of the structure. 

Thereafter, they investigated the seismic behaviour of 

different kinds of multi-storey CLT buildings paying 

special attention to their behaviour factor, modelling 24 

two-dimensional buildings, with different characteristics, 

such as the number of storeys, plan size, and the level of 

fragmentation in CLT panels. It was concluded that the 

seismic response was correlated with the structural 

design of the CLT (provisions, methods, etc.), level of 

fragmentation, and the slenderness of the CLT wall.  

Demirci et al. [5, 6] examined the seismic response of 

multi-storey CLT buildings employing numerical models 

with various structural arrangements and payed special 

attention to the influence of the ground-motion 

frequency content on the inelastic displacement demands 

of those buildings. The main remarks were related to the 

significant influence of the period ratio (T1/Tm) and the 

modification factor. As a consequence of the long-period 

in structures, which is common in taller CLT buildings, 

significant drift demands were expected, particularly in 

CLT buildings with a higher level of fragmentation, 

corresponding to more flexible structures. Similarly, 

CLT structures with larger joint densities were observed 

to experience more energy dissipation capacity. Due to 

these findings, the period ratio was proposed as a 

parameter in the seismic response of CLT buildings. In 

addition, the shear demands and accelerations were 

assessed [6]. It was observed that the shear demand 

increases as the period ratio increases up to a maximum 



value and, then, after this upper limit, the demand 

decreases. The shear demand was also related to the 

behaviour factor q and panel fragmentation level m, and 

lower shear demands were observed for higher values of 

q and m. In terms of accelerations, whilst smaller values 

of the period ratio (T1/Tm < 1.0) are associated with 

lower accelerations, higher values of the period ratio 

and, also, an increasing number of floors reflected an 

increasing value of acceleration. In both studies, Demirci 

et al. [4, 5], a relationship between inter-storey drift, 

acceleration and storey shear as a function of the period 

ratio, the behaviour factor, the level of panel 

fragmentation and the slenderness of the CLT wall was 

proposed with the period ratio featuring prominently in 

them.  

Employing advanced data science methodologies, this 

paper deals with the prediction of engineering demand 

parameters (EDPs) of multi-storey timber buildings 

subjected to earthquake loading. Particularly, the 

intensity measures (IMs) with the highest influence on 

the EDPs are detected. As such, this paper combines two 

emerging areas of research: timber engineering and data 

science.  

2 METHODOLOGY 

2.1 BUILDING MODELS AND SEISMIC DESIGN  

A tall CLT structure representing a hotel designed 

according to Eurocodes is taken as a case study. In order 

to generate the required database, three different heights 

(n = 6, 8, and 12 storeys, where n stands for the number 

of floors over the ground floor) and behaviour factors (q 

= 1.5, 2.0, and 3.0) are examined. This results in nine 

combinations for building features. Building upon the 

research of Demirci [4, 5] and taking into account the 

industry’s interest for using long panel configurations, a 

level of panel fragmentation equal to 0 is considered 

herein, ie. m = 0 (where m is the number of vertical joint 

lines), which means each cross-laminated timber (CLT) 

wall is modelled as one piece with a length equal to 8.5 

m without any internal cut, as shown in Figure 1, where 

an 8 storey building is illustrated. 

To model the building, CLT panels of C24 timber class 

are selected, where the following characteristic 

properties are used: bending strength equal to 24.0 MPa, 

tensile strengths parallel and perpendicular to the grain 

are 16.5 MPa and 0.12 MPa, respectively, the 

compressive strengths parallel and perpendicular to the 

grain are 21.0 MPa and 2.7 MPa, respectively, shear 

strength is 2.7 MPa, and the rolling shear strength is 1.2 

MPa, Young’s modulus parallel to the grain is assumed 

to be 12,000 MPa, the shear modulus is 690 MPa, and 

the rolling shear modulus is 50 MPa, and the density 

mean value is 420.0 kg/m3, with a Poisson’s ratio of 

0.25. Based on these properties, the design value has 

been calculated using Clause 2.4.3 of Eurocode 5 [6], 

where the modification factor is equal to 1.1 for 

instantaneous action such as seismic loads, and the 

partial factor for a material property is equal to 1.25 for 

glued laminated timber and 1.0 for accidental 

combinations, such as seismic loads. Permanent loads 

coming from the CLT slabs, CLT walls, and finishings 

were considered. For superimposed loads, the category 

of use A was taken into account, as defined by Tables 

6.1 and 6.2 of Eurocode 1 [8] for a hotel.  

 

Figure 1: Building layout based on 8 storeys. Ref.: Málaga-

Chuquitaype & Elghazouli [6]. 

According to Clause 3.4.2(2) of Eurocode 8 [9], the load 

combination considered in the seismic analysis is based 

on the 100% of the total dead load and 30% of the total 

imposed load. Seismic analysis is performed only in the 

x-direction, where the following parameters are 

considered: importance class II, according to Table 4.3 

Eurocode 8 [9]; type 1 elastic response spectra, which is 

related to high seismic areas with surface-wave 

magnitude (Ms) over 5.5; soil type C, which means a soil 

factor equals to 1.15 with TB = 0.2 s, TC = 0.6 s, and TD 

= 2.0 s, where TB, TC, and TD are values of the periods 

that define the shape of the spectrum and depend on the 

soil; viscous damping ratio equals to 5%; reference peak 

ground acceleration on type A ground equals to 3.0 m/s2; 

behaviour factors 1.5, 2.0 and 3.0. 

Afterwards, since the building layout fulfils the 

regularity requirements of Eurocode 8 [9], the lateral 

force method is used for the design of the CLT walls. In 

addition, torsional effects have been taken into account, 

as stated in Clause 4.3.3.2.4 of Eurocode 8 [9]. 

 

Figure 2: Model D2 presented by Gavric and Popovski. Ref.: 

Gavric, I., Popovski, M. [10]. 

The gravity load from each floor is calculated using the 

traditional procedure, ie. static equilibrium, load paths 



and tributary areas. The bending moment in each single 

CLT wall is calculated, based on the sketch presented in 

Figure 2, where Fd is the lateral load and qv is the gravity 

load. Following this sketch (Figure 2), static equilibrium 

equations can be formulated. This model was presented 

by Gavric and Popovski [10], and assumes that the uplift 

forces are fully taken by the hold-down connector, and 

the shear forces are taken by the shear bracket connector. 

From these design loads, each connector can be defined 

using a commercial catalogue. For this purpose, the 

Rothoblaas catalogue [11] was employed. 

2.2 NUMERICAL MODELLING 

Structural models were developed in OpenSees [12]. 

Each CLT building was modelled in two dimensions 

while considering geometric and joint nonlinearities. 

Figure 3 shows an idealisation of the structure, where 

each node is modelled with two degrees of freedom, one 

in the x-direction (horizontal) and one in the z-direction 

(vertical). A mass is assigned and distributed node by 

node, according to the seismic mass defined in Section 

2.1 above. The support conditions were defined as a 

node in the base of the ground floor wall and assigned a 

pinned condition to be later connected to the wall 

through a ‘link element’. 

The structure is subjected to seismic loads, and as a 

result, a ductile mechanism of failure is expected, which 

is induced through the connections and their nonlinear 

deformations [4]. The joints play a key role in this 

behaviour because of the intrinsic brittle mechanism of 

failure of timber. Therefore, CLT panels are modelled by 

means of an elastic and isotropic material using 

properties described in Section 2.1. On the other hand, 

connections are assigned a hysteretic material model. 

Six different kinds of connectors are employed, one 

shear bracket connector and five hold-down connectors. 

To model the hysteretic behaviour of these connectors, 

information from the literature and Rothoblaas catalogue 

[4, 11, 13] is used. 

The CLT walls are modelled as linear elastic quad 

elements. In the case of the connectors, a two-node link 

element is defined with zero-length for both shear 

brackets and hold-downs. Even though the behaviour of 

each connector is based on the model D2 (Figure 2) 

proposed by Gavric & Popovski [10], each link element 

has two degrees of freedom by definition, which means 

the response in both directions has to be defined. 

Therefore, the horizontal response in the hold-down 

connector and the vertical response in the angle bracket 

connector are modelled with high values of deformation 

and low values in terms of forces, resulting in a model 

that does not transfer significant forces in these 

directions. 

Since OpenSees restricts the definition of the geometric 

transformation of Quad elements to be linear, a leaning 

column was modelled next to each CLT wall along the 

height of the structure to simulate global geometric 

nonlinearities. To this end, two computational domains 

and a corotational transformation are employed for the 

leaning column. To model the boundary condition, a 

pinned connection is used in the base of the column, and 

equal lateral displacements are defined at each level 

between the CLT panels and the column through 

EdofMP constrains, which imposes an equal 

displacement at each level between both elements. 

 

Figure 3: Idealisation of the structure. Adapted and modified 

from Demirci et al. [5]. 

The gravity load is determined according to the values 

calculated and shown in Section 2.1 and is applied at the 

column in each level as a point load. On the other hand, 

lateral loads are defined as a uniform excitation load 

pattern, which reflects a seismic base motion through a 

time series path in the x-direction.  

Due to the nature of the seismic records, a nonlinear 

response-history analysis is performed, assuming a 

damping ratio of 5% of the critical value. A set of 1654 

seismic records coming from 51 earthquake events is 

selected from the NGA–West1 ground motion database, 

resulting in 14,886 nonlinear dynamic analyses. The 

analyses were performed in the DesignSafe-CI platform 

[14]. In addition, the energy increment test is used as the 

convergence criteria, with a tolerance equals to 1·10-6 

and 25 iterations, reaching an overall convergence of 

91.86%, ie. 13,675 analyses. The Newton – Raphson 

algorithm is selected to solve the nonlinear problem and 

the Newmark method is used to integrate each seismic 

record with γ = 0.5 and β = 0.25, where γ and β are 

parameters of the method related to the variation of 

acceleration, stability of the model and accuracy. To 

investigate the seismic response of timber buildings, 

acceleration, drifts and storey shear values are recorded 

at each level.  



3 RESULTS AND DISCUSSION 

3.1 INITIAL ASSESSMENT OF THE SEISMIC 

RESPONSE ESTIMATION USING 

REGRESSION ANALYSIS 

This study aims to identify the relationship between 

fourteen ground motion intensity measure parameters 

(IMs) and six engineering demand parameters (EDPs). In 

this context, the following IMs are selected: the peak 

ground acceleration (PGA), peak ground velocity (PGV), 

the peak ground displacement (PGD), the significant 

duration between 5% and 75% of the total Arias 

intensity (D5-75), the significant duration between 5% and 

95% of the total Arias intensity (D5-95), the mean period 

of the ground (Tm), the total Arias intensity (Ia), the 

spectral acceleration (Sa) at periods of T = 0.2s, T = 0.3s, 

T = T1, T = 1.0s, T = 3.0s, and T = 5.0s, and the ratio 

between the fundamental building period and the mean 

period of the ground motion (T1/Tm). In terms of the 

seismic responses, the following EDPs are chosen: the 

maximum inter-storey drift (IDmax), peak acceleration 

(Accmax) and peak shear force (Smax) along the height of 

the building, the maximum inter-storey drift (IDroof) and 

peak acceleration (Accroof) at the top of the building, and 

the maximum base shear at the bottom of the building 

(Sbase). 

After cleaning the data obtained from the models that do 

not reach the convergence criteria and parameters with 

lower variability along the different seismic records, the 

following functional form in equation (1) is used to 

perform an initial assessment of the seismic response 

estimation using regression analysis: 

 (1) 

where EDPk is the k-th (k=1,2,…,6) engineering demand 

parameter, IMj is the j-th (j=1,2,…,14) intensity 

measure, βo is the intercept, and βj and αj are the j-th 

estimated coefficients related to the j-th intensity 

measure.  

A regression analysis is executed on each EDP, 

considering only one intensity measure at a time, 

resulting in 840 analyses in total. Then, from each 

regression, the R2 value is extracted, symbolising how 

well one engineering demand parameter is explained by 

one or more intensity measures. 

Figures 4, 5, and 6 show a summary of each linear model 

analysed using the inter-storey drift, acceleration, and 

storey shear as EDPs, respectively. In each graph, twenty 

R2 values per IM are illustrated together with their 

corresponding error bars, which indicate mean and mean 

±1 standard deviation values. In Figure 4, the higher R2 

values correspond to PGD and Sa(T = 5.0 s) with mean 

values of 0.832 and 0.758, followed by Sa(T = 3.0 s) and 

PGV with mean values of 0.331 and 0.487, respectively. 

In contrast, the lower R2 values relate to D5-75 and D5-95, 

with mean values of 0.030 and 0.032, followed by Sa(T = 

0.2 s) and Sa(T = 0.3 s), with mean values of 0.052 and 0.067, 

respectively. In other words, if we used the peak ground 

displacement as a predictor, the inter-storey drift would 

be explained by PGD with 83.2% certainty. A higher 

value of the peak ground displacement is related to 

structure with longer periods, as expected. However, 

higher values associated with pseudo-acceleration 

response at higher values of the period (e.g. Sa(T=3.0s) and 

Sa(T=5.0s)) are not usual and can be due to significant 

dispersion of data. 

 

Figure 4: Inter-storey drift – R2 value vs each individual 

intensity measure. 

In Figure 5, the higher R2 values are reached by PGA 

and Sa(T = 0.2 s) with mean values of 0.993 and 0.930, 

followed by Sa(T = 0.3 s) and Ia with mean values of 0.929 

and 0.929, respectively. In contrast, lower R2 values are 

presented by Tm and T1/Tm, with mean values of 0.161 

and 0.157, followed by PGD and Sa(T = 5.0 s), with mean 

values of 0.240 and 0.276, respectively. In other words, 

if we used the peak ground acceleration as a variable, the 

acceleration would predict the seismic response with 

99.3% certainty. As expected, the acceleration is related 

to the peak ground acceleration in both Accmax and 

Accroof. Since the PGA is a high – frequency parameter, 

it should be correlated with the Arias intensity, which is 

confirmed in Figure 5. Similarly, the values of the 

pseudo-acceleration response at higher frequencies, or 

lower periods, are connected to Arias intensity and PGA 

as well. 

Furthermore, in Figure 6 the higher R2 values are 

presented by PGA and Sa(T = 0.3 s), with mean values of 

0.985 and 0.926, followed by Sa(T = 0.2 s) and Ia with mean 

values of 0.926 and 0.921, respectively. In contrast, the 

lower R2 values are presented by Tm and T1/Tm, with 

mean values of 0.172 and 0.170, followed by PGD and 

Sa(T = 5.0 s), with mean values of 0.224 and 0.262, 

respectively. In other words, if we used the peak ground 

acceleration as an input variable in the regression model, 

the acceleration would predict the seismic response with 

98.5% certainty. As known, the acceleration has a 

significant relation to the storey shear. In fact, not only 

Eurocode 8 but also international seismic codes use 

parameters related to the acceleration to express the 

shear force under seismic loads, hence, it is predictable 

that Figures 5 and 6 are related. 



 

Figure 5: Acceleration – R2 value vs each individual intensity 

measure. 

 

Figure 6: Storey Shear – R2 value vs each individual intensity 

measure. 

Analysing each parameter graphically, a substantial 

dispersion is observed in the inter-storey drift. This 

observed dispersion could have consequences in the final 

model, not only in terms of fitting but also in the aspect 

of R2 values, standard deviations, and errors. In 

comparison with the inter-storey drift, accelerations and 

storey shear present a better correlation in terms of 

fitting and dispersion. At this point, a good fit is 

expected in the model for both accelerations and storey 

shears, as reflected by their R2 values, standard 

deviations, and errors. 

3.2 ASSESSMENT OF THE SEISMIC RESPONSE 

ESTIMATION USING MACHINE LEARNING 

APPROACHES 

Machine learning is the area from Artificial intelligence 

and Computing Science, which, using statistical tools 

and algorithms, learns from the training data. With time, 

as more experience (data) is obtained by the model, its 

capacity to predict the response will improve. The three 

main machine learning approaches can be identified as 

supervised learning, unsupervised learning, and 

reinforcement learning. In this context, supervised 

learning is selected herein, where the predictive model 

has a clear aim. That means given an input (data), a 

model is sought for a particular and likely output. 

As a part of the supervised learning, the database is split 

into two subsets. The first subset is utilised in the 

training of the predictive model, which means only a part 

of the original database is used to build the model, while 

the second subset is unknown to the model and is used to 

validate. The percentages of training and testing data are 

determined based on experience; however, the literature 

proposes a minimum value of 50% for training data [15]. 

For each set, the related error and accuracy are 

calculated. According to James [15], the training (trerror) 

and test error (tserror) rates are computed by equations (2) 

and (3) below: 

 (2) 

 (3) 

where n is the sample size; yi is the i-th output value 

from the training data;  is the i-th predicted output 

value;  is an indicator, which is equal to 1 if 

 and 0 otherwise; y0 is the 0-th output value from 

the testing data;  is the 0-th predicted output value, 

using the calculated model;  is an indicator, 

which is equal to 1 if  and 0 otherwise; and Ave 

is the average of this indicator. Consequently, the 

accuracy of prediction is calculated as one minus this 

error. 

Two different methods are employed to assess the 

seismic response model. The first is called forward and 

backward stepwise selection and is related to the subset 

selection approach, which identifies the best subset of 

predictors that can predict the seismic response of CLT 

structures. The second method is called Lasso and is 

associated with the shrinkage or regularisation approach, 

where all the predictors are used in the model, but they 

are also regulated by a parameter, which can make the 

predictor equal to zero, improving (reducing) the 

variance of the model. In both cases, the main objective 

is to select the best group of predictors to estimate the 

seismic response of CLT structures.  

Regarding forward stepwise selection, the data is 

imported and normalised using the lognormal space, 

which is divided into input and output. The training and 

testing samples are defined, starting with 50% each. 

Then, using the functional form given by equation (1), 

the forward selection is performed, which uses the 

deviance as adding criterion in the model. That means 

the deviance of a model with more parameters is smaller 

than the deviance of a model with fewer variables. 

Hence, the algorithm checks in each iteration the 

difference between the deviance from one model to 

another. In this process, the inverse of the chi-square 

cumulative distribution function (CDF) is assumed by 

the algorithm as the maximum difference of deviance. 

To this end, one degree of freedom and 0.95 as the 



corresponding probability is considered in the chi-square 

inverse CDF. Then, the regression is performed on each 

EDP, where the training and test error rates are 

calculated as well as the accuracy of the prediction. A 

total of 90 regression models are developed and 

evaluated. 

Figure 7 displays the evolution of the R2 value for each 

predicted EDP as a function of the number of variables 

corresponding to IMs. It is observed that inter-storey 

drifts (IDmax and IDroof) present a similar path as 

accelerations (Accmax and Accroof) and storey shears (Smax 

and Sbase). In the case of the accelerations and storey 

shears, the aggregation effect of adding more than two 

predictors in the R2 value is not significant. For instance, 

considering two predictors, the acceleration R2 values 

are 0.9831 and 0.9989 for Accmax and Accroof; and the 

storey shear R2 values are 0.9714 and 0.9952 for Smax 

and Sbase, respectively, and these values would not 

change noticeably if we added three or more variables to 

the model. 

 

Figure 7: Forward selection: R2 value vs number of predictors 

for each EDP. 

In comparison to accelerations and storey shears, inter-

storey drifts present R2 values of 0.8114 and 0.7202 for 

IDmax and IDroof with two predictors and increase to over 

0.9 when using five and seven predictors. Regarding the 

standard deviation and test error, the values are 0.96 and 

0.99; and 8.69% and 11.41% for IDmax and IDroof, 

respectively, using two predictors. Whereas the standard 

deviation is kept almost constant after two predictors, the 

test error is decreased to 5.82% and 6.71% in both IDmax 

and IDroof, using five and six predictors. For reasons of 

simplicity and since the dispersion of the prediction 

plateaus after two predictors, two predictors are 

considered in the model. 

 

Figure 8: Forward selection: Testing error vs number of 

predictors for each EDP. 

This scenario is also supported by Figure 8, which 

illustrates how the test error decreases if the number of 

predictors is increased. Likewise, it is observed that 

inter-storey drifts (IDmax and IDroof) present a similar 

path as well as accelerations (Accmax and Accroof) and 

storey shears (Smax and Sbase), using forward stepwise 

selection. For example, considering two predictors, the 

test errors are 2.08% and 0.52% for Accmax and Accroof, 

while the errors are 1.43% and 0.57% for Smax and Sbase, 

respectively. Therefore, two parameters are used to build 

the model. 

Table 1 shows the two selected predictors for each EDP, 

the R2 values, and the standard deviations of the models, 

using forward stepwise selection. Although some 

intensity measures are repeated in Table 1 and Section 

3.1, such as PGD in inter-storey drifts and PGA in both 

accelerations and storey shears, the aggregation effects 

in combination with other intensity measures lead to the 

incorporation of other predictors in the model. This is 

explained because when the second iteration starts, the 

algorithm evaluates the best fitting of the model in 

function of the results from the first iteration, with the 

first intensity measure (IM1) already added. In fact, in 

terms of methods, this is one of the disadvantages of the 

forward selection procedure, which has to be contrasted 

with other methods and evaluated by experimented 

professionals in the field.  

Table 1: Variable selection, R2 values and standard deviation 

using forward stepwise selection.  

EDPi IM1 IM2 R2 σ 

IDmax PGV PGD 0.8114 0.96 

Accmax PGA T1/Tm 0.9831 1.11 

Smax PGA Sa(T=1.0 s) 0.9714 1.16 

IDroof PGV PGD 0.7202 0.99 

Accroof PGA PGV 0.9989 1.16 

Sbase PGA T1/Tm 0.9952 1.15 

Whilst the inter-storey drift models present smaller R2 

values due to the dispersion of the inter-storey drift data, 

the accelerations and storey shears models present a 

better correlation. In addition, the calculated R2 values in 

the first approach in Section 3.1 and Table 1 are 

dissimilar; however, they can be explained by the 

different data sub-sets employed where the initial 

approach performed the regression using 100% of the 

data instead of the 50% of training data that was 

assumed in the forward stepwise selection. 

Turning now to the backward stepwise selection, the 

same algorithm is used but with one feature changed. 

This refers to the kind of stepwise selection applied. In 

the same way, 90 regression models are calculated and 

evaluated. 

Figure 9 shows R2 values for each predicted EDP, using 

different numbers of variables for IMs. The results are 

similar to those observed in the forward selection. The 

inter-storey drifts (IDmax and IDroof) present a similar 

pattern to the accelerations (Accmax and Accroof) and 

storey shears (Smax and Sbase). Regarding the 

accelerations and storey shears, the aggregation effect is 



not significant after two predictors. For instance, 

considering two predictors, the acceleration R2 values 

are 0.9833 and 0.9988 for Accmax and Accroof; and the 

storey shear R2 values are 0.9715 and 0.9952 for Smax 

and Sbase, respectively. 

 

Figure 9: Backward selection: R2 value vs number of 

predictors for each EDP. 

In comparison with accelerations and storey shears, 

inter-storey drifts present R2 values of 0.8080 and 0.7207 

for IDmax and IDroof with two predictors, which increase 

to over 0.9 when using five and seven predictors. 

Regarding the standard deviation and test error (Figure 

10), the values are 0.95 and 0.99 for IDmax and IDroof; and 

8.71% and 11.47% for IDmax and IDroof, respectively, 

using two predictors. While the standard deviation is 

kept almost constant after two predictors, the test error is 

reduced to 5.99% and 6.74% in both IDmax and IDroof, 

using five and seven predictors. For the sake of 

simplicity and because the dispersion of the prediction 

becomes constant, two predictors are considered in the 

model. 

Similarly to the forward selection, Figure 10 illustrates 

insignificant impact on the test error. The test errors are 

2.10% and 0.51% for Accmax and Accroof, while the errors 

are 1.42% and 0.56% for Smax and Sbase, respectively, 

using two predictors. As before, two variables are 

utilised to build our model. 

 

Figure 10: Backward selection: Testing error vs number of 

predictors for each EDP. 

Table 2 shows the two chosen predictors for each EDP, 

the R2 values, and the standard deviations of the models, 

using backward stepwise selection. In this case, there are 

several similarities between Section 3.1, Table 1 and 

Table 2. For instance, the first intensity measure (IM1) in 

each model with backward selection is used in the 

forward selection model and is also supported by Figures 

4, 5, and 6. In addition, it is interesting to note that the 

second intensity measure in the backward selection is 

related to the ratio between the fundamental period and 

the mean period (T1/Tm) in four EDPs. In other words, 

although the R2 values for this variable are small in the 

first approach in Section 3.1, the aggregation effect of 

this variable in the backward selection is better in 

comparison with the other parameters. 

Table 2: Variable selection, R2 values and standard deviation 

using backward stepwise selection.  

EDPi IM1 IM2 R2 σ 

IDmax PGD T1/Tm 0.8376 0.97 

Accmax PGA T1/Tm 0.9854 1.12 

Smax PGA Tm 0.9708 1.15 

IDroof PGD T1/Tm 0.7606 1.02 

Accroof PGA PGV 0.9990 1.15 

Sbase PGA T1/Tm 0.9956 1.15 

In comparison with the stepwise selection, the following 

functional form (equation 4) is adopted by the Lasso 

algorithm: 

 (4) 

where EDPk is the k-th (k=1,2,…,6) engineering demand 

parameter, IMj is the j-th (i=1,2,…,14) intensity 

measure, βo is the intercept, and βj is the j-th estimated 

coefficient related to the j-th intensity measure. In terms 

of importing and preparing the data, the same procedure 

is applied. Then, a total of 6 regression models are 

calculated and evaluated. 

 

Figure 11: Maximum Inter-storey Drift along the height, using 

Lasso algorithm. 

Figures 11 and 12 summarise the results from Lasso as 

applied to the inter-storey drifts along the building height 

(IDmax) and at the roof level (IDroof), respectively. In the 

y-axis, the estimated coefficients are shown with respect 

to different values of the tuning parameter λ. The 

entrance order of each predictor, according to the λ value 

is also presented in Figures 11 and 12. The selection of 

this parameter (λ) is key because this reduces the mean 

squared error of the model. In the graph, the tuning 

parameter is drawn, considering the minimum value and 

the minimum plus one standard error. In the case of 

IDmax, PGD and Tm are selected as the first and second 



intensity measures in the model, which are the same 

identified variables for IDroof. 

 

Figure 12: Inter-storey Drift (Roof), using Lasso algorithm. 

On the other hand, Figure 13 shows the case of Accmax, 

choosing PGA and Ia as the first and second intensity 

measures in the model, respectively. Similarly, Figure 14 

displays the case of Accroof, where PGA and PGV are 

selected as the first and second intensity measures in the 

model. 

 

Figure 13: Maximum Storey Acceleration along the height, 

using Lasso algorithm. 

 Figure 14: Acceleration (Roof), using Lasso algorithm. 

According to Figures 15 and 16, in the case of Smax, PGA 

and Ia are selected as the first and second intensity 

measures in the model. Likewise, in the case of Sbase, 

PGA and T1/Tm are selected as the first and second 

intensity measures in the model. 

 

Figure 15: Maximum Storey Shear along the height, using 

Lasso algorithm. 

 

Figure 16: Base Shear, using Lasso algorithm. 

Table 3 summarises the variables selection by each 

method, where several patterns are repeated for each 

EDP. As seen below, the inter-storey drifts (IDmax and 

IDroof) have a common IM among the three methods, 

which is the peak ground displacement (PGD). Also, the 

mean period is used in two of the three methods, which 

could be selected as a good parameter to predict the 

seismic response of CLT buildings. 

Table 3: Summary of the variable selection.  

EDP 
Forward Backward Lasso 

IM1 IM2 IM1 IM2 IM1 IM2 

IDmax PGV PGD PGD T1/Tm PGD Tm 

Accmax PGA T1/Tm PGA T1/Tm PGA Ia 

Smax PGA Sa(T=1.0 s) PGA Tm PGA Ia 

IDroof PGV PGD PGD T1/Tm PGD Tm 

Accroof PGA PGV PGA PGV PGA PGV 

Sbase PGA T1/Tm PGA T1/Tm PGA T1/Tm 

In the case of acceleration, on one hand, the maximum 

acceleration considers the peak ground acceleration 

(PGA) as the first predictor. However, one variable is 

repeated, which is the ratio between the fundamental and 

mean period (T1/Tm). Even though Lasso regression 

identifies the Arias intensity as the second parameter, in 

Figure 13 the algorithm is close to select T1/Tm, 

confirming that this predictor might be a good second 

parameter. On the other hand, for the acceleration at the 

roof level, PGA is identified by the three methodologies 

together with PGV as the first and the second variables, 

respectively. 



The storey shear is governed by the PGA as the first 

predictor in both maximum and base storey shear, which 

is consistent with current seismic codes. For the second 

parameter, whereas there is an agreement on the use of 

T1/Tm in the base shear, the second variable is not clearly 

in agreement. 

Table 4 summarises the training and test errors for 

individual EDPs and the techniques used. As seen in 

Lasso, both errors are slightly similar in each situation, 

e.g. the training and testing error of the maximum storey 

shear is 1.4% in both cases. In fact, since the testing 

error is the obtained error of the model tested with an 

unseen data, this is a good indicator that the model can 

predict the seismic response of our data quite well, for 

each EDP. In addition, with respect to the values of 

error, they are consistent with the other inferences from 

the first variable selection in Section 3.1 and stepwise 

selection. 

Table 4: Summary of the training (tr) and test (ts) error.  

EDP 

Forward Backward Lasso 

tr ts tr ts tr ts 

Error Error Error Error Error Error 

IDmax 5.7% 5.8% 8.1% 8.1% 5.6% 5.5% 

Accmax 2.0% 2.1% 2.0% 1.9% 1.9% 1.9% 

Smax 1.4% 1.4% 1.4% 1.4% 1.4% 1.4% 

IDroof 6.8% 6.7% 10.6% 10.6% 6.8% 6.7% 

Accroof 0.6% 0.5% 0.5% 0.5% 0.5% 0.6% 

Sbase 0.5% 0.6% 0.5% 0.5% 0.4% 0.4% 

Regarding the global errors obtained in the three 

techniques applied; the errors are comparable for 

accelerations and storey shears, not only between the 

training and test errors but also between the three 

methodologies employed. By contrast, the overall error 

in the inter-storey drift is higher, which can be explained 

by the larger dispersion of the data of inter-storey drifts. 

Also, it is observed that, in backward selection, the error 

is greater than when forward selection or the Lasso are 

used for the same EDP. Although there are differences 

between EDP errors, in all cases, the training error and 

test error are very similar, which means that the model 

proposed could properly predict the seismic response 

under new data. 

4 CONCLUSIONS 

This paper has applied machine learning techniques to 

assess the efficiency of different ground-motion intensity 

measures as seismic response predictors for CLT 

buildings. A direct relationship between storey shear and 

the PGA was observed, which is consistent with current 

codified guidance, where the design storey shear and 

acceleration are related to the PGA. In addition, the 

inter-storey drift was found to be related to the PGD, 

which usually applies only in the case of long period 

structures. 

Importantly, a clear pattern was identified in the inter-

storey drift (both the maximum value along the height 

and the maximum drift at the roof level) where a trend is 

observed among the three machine learning 

methodologies adopted (backward and forward selection 

and Lasso) where the PGD, period ratio (T1/Tm), and 

mean period (Tm) are identified as the preferred intensity 

measures to model the inter-storey drift. Furthermore, a 

pattern was recognized in the acceleration in both the 

maximum floor acceleration and the peak acceleration at 

the roof level, where the PGA emerges as the first 

predictor. However, for the second parameter, there is a 

tendency to use the T1/Tm and PGV in the maximum 

acceleration along the height and the maximum 

acceleration at the roof level, respectively. Similarly, a 

pattern was noticed in the storey shear values for both 

the maximum shear along the height and the maximum 

value at the base, where a trend is seen once the PGA 

and T1/Tm are considered as the intensity measures to 

model the storey shear. These conclusions support those 

presented by Demirci, et al. [4, 5] on the basis of more 

conventional statistical approaches. 

The procedure used in this study to select the input 

variables in the regression models can be replicated to 

predict not only the seismic response in CLT buildings 

but also in other kinds of structures. However, in terms 

of the number of variables, the models have 

demonstrated to be quite sensitive to the order of adding 

or removing variables, mainly in the forward and 

backward selection techniques. In this sense, it is 

important to consider their validation and cross-

validation as steps to choose the optimal model. In the 

current research, and as a consequence of the variable 

selection performed, a predictive model can be defined 

from each of the three machine learning methodologies 

used, however, those models have not been tested and 

require further validation. 
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