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A B S T R A C T   

Recent years have seen a paradigm shift in assessing the performance of assets in response to disruptive hazards, 
in that resilience is seen as a more inclusive and over-arching decision variable. This shift in decision drivers 
provides a better picture of asset behavior in response to hazardous events such as earthquakes and hurricanes. 
Since highway bridges are among the most critical and vulnerable components of transportation networks, 
evaluating their functionality under extreme events leads to well-informed decision-making. Whilst there is an 
ever-growing interest in resilience-based hazard assessment in a wide range of infrastructure sectors, there is 
limited attention on identifying resilience drivers as a function of hazard and asset characteristics. To this end, 
this paper presents a framework for probabilistic resilience assessment of a cohort of common highway bridges 
subjected to a wide range of ground acceleration intensities. This study presents the first ensemble learning-based 
predictive model using bagging and boosting techniques to predict resilience index as a function of seismic events 
and asset characteristics on bridge resilience. The hypermeters and input structure of the predictive model are 
optimized to reduce complexity and maximize efficiency. The findings show that the proposed model performs 
with a 75–95% success rate in predicting resilience as a function of structural characteristics and peak ground 
acceleration. This model provides useful insights on the impact of various parameters and drivers of resilience in 
concrete box-girder bridges.   

1. Introduction 

As principal components of transportation infrastructure, highway 
bridges play a significant role in facilitating communication and 
reducing traffic. Bridge damage from a catastrophic event may interfere 
with its functionality that imposes disruption to the partial or entire 
transportation network. The consequent malfunctioning directly im
pacts post-earthquake emergency responses to an extended region that 
affects the socio-economic recovery process. Past seismic events 
revealed that bridges can be vulnerable to experience severe seismically- 
induced damages [27,30,43]. Thereby, evaluating the seismic perfor
mance of bridges is essential to optimize the recovery process, repair 
procedure, retrofit decisions, and sustain emergency management. To 
this end, this paper presents a generalized probabilistic framework for 
the resilience assessment of bridges using efficient machine learning 
(ML) approaches. 

According to Transport Resilience Review [11], in the context of 
extreme events, resilience is defined as “the ability of the transport 

network to withstand the impact of extreme events, to operate in the 
face of such condition and to recover promptly from its effects”. The 
main challenge in resilience-based decision-making is the complexity of 
the resilience concept and the lack of consensus in its definition and 
means of quantification. Despite resilience’s interchangeable nature and 
various perceptions of its concept, specific characteristics such as the 
ability of a system to absorb, recover and/or adapt to disruptive events 
are shared among different definitions. For example, Butler et al. [5] 
define resilience as the degree to which the system minimizes the level of 
service failure magnitude and duration over its design life when subject 
to exceptional conditions. In another example, Woods [60] defines four 
main concepts for resilience as I) a rebound from trauma to reach the 
equilibrium, II) identical to robustness, III) opposite to brittleness, and 
IV) network architectures that can sustain system ability to adapt to 
future disruptive situations. 

The review of literature on resilience quantification in the engi
neering sector indicates that the majority of resilience quantification 
means have revolved around the post-event rebound capability of the 
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asset as a function of time-dependent performance indicator. For 
example, Henry and Emmanuel Ramirez-Marquez [25] represent the 
performance changes of a system exposed to a disruptive event as a 
trapezoid function. In this representation, a system is normally per
forming at its status-quo equilibrium phase (Zone 1, Fig. 1) and enters 
the failure absorption phase (Zone 2) at the time when the event hap
pens. Then, the system initiates the recovery phase (Zone 3) and 
switches to the recovery stage (Zone 4) until reaching the post-recovery 
equilibrium (Zone 5). Hajializadeh and Imani [20] have used an 
expanded definition of the trapezoid description to cover more variants 
of failure absorption patterns and recovery trajectories (Fig. 1). 

While there have been limited studies in formulating failure propa
gation patterns in Zone 2 and considerations for Zone 3, there has been 
an extensive body of research concentrated on introducing recovery or 
restoration trajectories, Zone 4. In this regard, as in the overview pro
vided by Gidaris et al. [19], the restoration functions of a bridge sub
jected to earthquakes can either be derived using probabilistic analytical 
models or based on experts’ judgments. Among the theoretical models, 
Bocchini et al. [4] proposed a six-parameter sinusoidal function that 
could capture multiple forms of restoration trajectory such as linear 
[3,9] and exponential [28]. Furthermore, several researchers such as 
Decò et al. [12] and Biodini et al. [2] used this function to develop 
probabilistic resilience assessment considering the uncertainties asso
ciated with peak ground acceleration (PGA) intensities and retrofitting 
process. 

In the representation of an asset/structure/infrastructure/system 
performance as a function of a performance indicator, Q(t) , resilience is 
often measured as a rate of recovery. This definition considers the per
formance of the asset in Zone 4 only. Another common metric is the area 
of remaining performance indicator (positive connotation)/area of lost 
performance indicator (negative connotation). This metric is often 
formulated and expressed as equation (1): 

R =
1

th − t0

∫ th

t0
Q(t)dt (1)  

in which, R represents the resilience index, t0 and th indicate the start 
and end of the time horizon considered for the analysis. This technique 
has been widely used in resilience-based single/multi-hazard assessment 
frameworks [26,19]. Additional but rarely used metrics include Resil
ience Density Function, Bandwidth and Resilience Moment, and Cu
mulative Resilience [46]. 

Whilst resilience, as defined in the engineering context, has been 

considered a core decision variable of many of the recent hazard- 
assessment frameworks, its main drivers and its dependencies on asset 
characteristics are yet to be investigated. The classical approach to es
timate resilience can be improved in several aspects such as improving 
reliability and prediction power. To this end, the current study includes 
important sources of uncertainties in the resilience model. The lack of 
flexibility of the classical approach to incorporate sources of un
certainties into the resilience model can influence the reliability of the 
estimations. Furthermore, investigating the influence of the variations of 
uncertain features on the resilience requires a substantial computational 
cost to re-do bridge seismic analysis with the new set of feature com
binations. Thereby, including uncertain configurational features [50] in 
the quantification of structural resilience is crucial to have a more 
realistic estimation. 

ML approaches provide ample opportunities to enhance the resil
ience assessment of structures due to their capability to handle complex 
problems with a large dataset. Taking advantage of the ever-growing 
computational power offered by ML algorithms, this study presents a 
novel ensemble learning (EL) – based resilience prediction model. This 
model predicts resilience index as a function of seismic hazard and 
bridge structural characteristics. Also, neglecting significant sources of 
uncertainties could lead to over- or under-estimation of resilience. 
Therefore, as part of the proposed model in this study, an embedded 
feature identification technique [53] is used to provide useful insights 
into the level of influence of the structural features on the bridge resil
ience and the main structural-based resilience drivers for the first time. 

Moreover, the classical resilience models have fixed functional forms 
and prior assumptions on the distribution of parameters. Consequently, 
they may not be able to accurately capture complexity in the data due to 
its high-dimensional nonlinear nature. Hence, a more generalized 
approach such as EL methods can be especially helpful to model 
complicated relationships between the input and output data without 
engineered prior knowledge. 

In the ML community, EL methods have been introduced [13] as 
unbiased algorithms that can capture the complex relationship between 
the input and response variables. These methods owe their popularity 
over other ML approaches to reducing model variance with low bias. 
Furthermore, researchers have successfully applied EL methods to solve 
a diverse set of research problems [61,22,32,51]. The use of EL algo
rithms, in this study, is mainly motivated by their unique approach in 
combining multiple individual learners to achieve an enhanced aver
aged prediction quality relative to single regression models. Besides, this 

Fig. 1. Schematic illustration of system performance indicator.  
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characteristic aids in reducing the overall prediction error. This 
approach is particularly beneficial to improve predictions by specifically 
overcoming challenges such as weak predictors, small sample size, and 
overfitting training data [21,13]. This study aims to pave the path to
wards the application of ML algorithms in the seismic resilience 
assessment of bridges. In summary, the key novelties of the presented 
investigation lie in two folds: 1. The application of ensemble machine 
learning in building a bridge resilience assessment framework and 2. 
Appraisal and quantification of structure-based resilience drivers. 

The following section provides a detailed overview of the probabi
listic resilience assessment framework utilized in this study. Section 3 
presents an overview of the Ensemble Machine Learning approach. 
Sections 4 and 5 provide details of the EL-based resilience predictive 
model and its application to a cohort of highway bridges, followed by 
reflection on results and concluding remarks in Section 5. 

2. Seismic resilience assessment framework for bridges 

In this study, the resilience index is quantified as the area of 
remaining functionality (also referred to as a performance indicator), as 
shown in Fig. 1. To describe the behavior of a bridge in response to a 
seismic event, the structural capacity is utilized as a performance indi
cator of the structure also referred as Q(t) . Following a seismic event, 
the structural capacity of the bridge is reduced to the corresponding 
remaining capacity, Zone 2. The failure absorption pattern in Zone 2 is a 
function of hazard and structural specifications (i.e., for severe seismic 
events and brittle behavior, the failure propagation is a sudden drop in 
performance indicator, whereas for a ductile structure, a more graceful 
failure absorption is expected). The failure absorption of a structure 
following a hazardous event (e.g., seismic event) is often simplified as a 
sudden drop in performance indicators. For seismic hazards, the 

magnitude of the drop is defined as a function of the damage state [40], 
that are defined according to the extent of the damage varying from 
slight to complete (Table 1). The typical four states include slight, 
moderate, extensive, and complete [16], with their corresponding def
initions as provided in Table 1. 

To account for a wide range of seismic event intensities, damage 
levels, and different structural characteristics in failure propagation 
functions, fragility curves are driven from probabilistic seismic demand 
models (PSDMs). PSDMs of bridge components (e.g., column, abutment) 
express engineering demand parameters (EDP) (e.g., column curvature 
ductility) as a function of the PGA intensity (IM). The common PSDMs is 
a single variable linear regression model, with regression coefficients a 
and b, which estimates the median value of EDPs at each IM value 
(Equation (2)) with the variability expressed in the form of a dispersion 
value (βDM) as shown in Equation (3) with DM representing the demands 
data points. 

ln(μDM) = ln(a) + bln(IM) (2)  

βDM =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑n

i=1
[ln(DMi) − (ln(a) + bln(IMi))]

2

n − 2

√
√
√
√
√

(3) 

This was first introduced by Shome et al. [47] and has been widely 
applied for the performance analysis of various types of bridges 
[18,41,62,42,54] over the years. Modified versions of the seismic de
mand models have been proposed by researchers for the application to 
bridges with specific characteristics [49,55,52,65]. 

The seismic demand model is often used to derive parameters 
required for analytical fragility curves expressed as Equation (4) that 
shows the probability calculation for the pth bridge component. 

PFp|IM = P[SD⩾SC|IM] = Φ

⎛

⎜
⎜
⎝

ln
(

μDM/SC

)

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

β2
DM + β2

C

√

⎞

⎟
⎟
⎠ (4)  

in which Φ() stands for normal cumulative function, SC and βc represent 
the mean and dispersion of capacity values. In order to estimate the 
bridge system fragilities, the component fragilities can be combined 
using a joint probabilistic approach and Monte Carlo simulations as 
proposed by Nielson and DesRoches [39]. Another technique is to use 
the upper conservative and lower unconservative bounds (Equation (4)) 
that provides an approximate probability interval. In this study, the 
former approach is used. 

max
p

PFp|IM ≤ PFsystem|IM ≤ 1 −
∏

p

[
1 − PFp|IM

]
(5) 

This calculation is built on the assumption that the EDPs are 
lognormally distributed [35] which may not be an applicable assump
tion for all types of bridges and EDPs as recently shown by several 
studies such as [17]. Thereby, establishing a more generalized ML-based 
framework that does not require such a prior assumption on the distri
bution of variables is desirable. To this end, EL methods satisfy this 
criterion by covering a wide range of distributions for the input 
variables. 

Similar to damage absorption patterns, recovery trajectories are 
often defined as a function of pre-defined four damage levels/states. 
This study considers the commonly used [63,59,14,29] recovery func
tion recommended by HAZUS-MH [24]. The recovery trajectory is 
defined as a normal cumulative distribution function, with mean re
covery time (mt,d) and standard deviations (σt,d). The recommended 
values for mt,d are 0.6, 2.5, 75, 230 days for the slight/minor, moderate, 
extensive, and complete damage states, respectively. For the standard 
deviations (σt,d) values of 0.6, 2.7, 42, 110 days are recommended for 
four damage states. Considering the abrupt drop in performance indi
cator as the failure propagation function and utilizing the defined 

Table 1 
Description of the damage states [49].  

Descriptions DS1* DS2* DS3* DS4* 

Qualitative 
description 
of damage 

Aesthetic 
damage 

Repairable 
minor 
functional 
damage 

Repairable 
major 
functional 
damage 

Component 
replacement 

Shake Cast 
Inspection 
Priority 
levels 

Low Medium Medium-High High 

Likely 
Immediate 
Post- Event 
Traffic 
State 

Open to 
normal 
public traffic 
– No 
Restrictions 

Open to 
Limited 
public traffic 
– speed/ 
weight/lane 
restrictions 

Emergency 
vehicles only 
– speed/ 
weight/lane 
restrictions 

Closed (until 
braced) – 
potential of 
collapse 

Traffic 
Operation     
Closure/ 
detour 
needed 

Very unlikely Unlikely Likely Very likely 

Traffic 
restrictions 
needed 

Unlikely Unlikely Very likely Very likely 

Emergency 
Repair     
Shoring/ 
bracing 
needed 

Very unlikely Unlikely Likely Very likely 

Roadway 
leveling 
needed 

Unlikely Likely Very likely Very likely 

* DS1, DS2, DS3, and DS4 represent slight, moderate, extreme, and complete 
damage states. 
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normal distribution to express recovery trajectory, the normalized per
formance indicator function in this study can be formulated as shown in 
Equation (6): 

Q(t) =
∑nDs

d=1

(
1 − PFp|IM

)
× Φ

(
t − mt,d

σt,d

)

(6) 

Fig. 2 demonstrates a sample of the considered normalized perfor
mance indicator for a range of PGAs. As can be seen from this figure, all 
performance indicators start with the ideal condition of 100% func
tionality (Zone 1). As can be expected the duration of recovery is highly 
dependent on the intensity of the seismic event, therefore the extend of 
Zone 4 varies with the PGA intensity. 

In this representation, the behavior of the asset is formulated from 
the end of the failure absorption zone, Zone 2, and the recovery 

initiation time is assumed negligible. It is also assumed that both the 
failure propagation and recovery trajectory functions share the same 
conditional probability of occurrence. This can be argued as a reason
able assumption since the recovery trajectory is a function of bridge 
characteristics and hazard intensity, as is the case with failure 
propagation. 

3. Ensemble machine learning approach 

3.1. Overview of the algorithms 

A decision tree [6] algorithm that divides data into branch-like 
segments can be used to solve both classification and regression prob
lems. This non-parametric methodology can efficiently deal with large 
datasets, complicated data structures, and missing values. Decision trees 

Fig. 2. An example of normalized performance indicator considered in this study.  

Fig. 3. Schematic diagram of the ensemble learning methods.  
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provide easy-to-interpret visualizations by constructing an inverted tree 
with a root node on the top, which represents all the rows in the data set. 
The root node is divided into child/interior nodes. Nodes that do not 
have any child are called terminal/leaf nodes. This approach evaluates 
the GINI index [31] to determine the optimal split of data. 

Although individual decision/regression trees generate an intuitive 
understanding of how the input variables are related to the outputs, they 
are very sensitive to minor changes in the training data set [13]. The 
ensemble method provides an efficient tool to overcome this challenge 
and prevent the overfitting issue [64]. This non-parametric ML tech
nique can be applied to solve a wide range of problems [36] since it does 
not presume any underlying distribution of the input and output vari
ables. In the EL approach, multiple decision/regression trees are 
generated and trained in a parallel or sequential manner as base learners 
[66]. This aggregating strategy can enhance the efficiency of individual 
learners to improve the accuracy and generalization ability of a pre
dictive model [61]. 

Two different main techniques known as bagging and boosting can 
be applied to create base learners. Both methods can produce more 
flexible and stronger predictive models compared to the single regres
sion trees, however, they differ in functionality. The former primarily 
reduces the model variance by producing several learners in parallel, 
whereas the latter reduces the bias by creating sequential learners 
(Fig. 3). A brief overview of the EL techniques, used in this study, is 
provided in the following. However, for more detailed explanations, 
interested readers are encouraged to review provided references in this 
section and the works by Bühlmann [8], Hastie et al., [23], Skurichina 
and Duin [48], Sutton [57], and Syam and Kaul [58]. 

3.1.1. Bagging 
Bagging, introduced by Breiman [7], implements bootstraps aggre

gation to randomly split the entire training data into similar-sized 
samples with replacements to train multiple independent learners 
[1,56]. Then, the outputs of all learners are concatenated to compute the 
final averaged prediction. The generalization error of this method 
directly depends on the characteristics of the base learners. 

3.1.2. Random forest 
Random Forest is a bagging supervised technique in which multiple 

regression trees are constructed in parallel with no interaction between 
them [33]. The output is the mean prediction of individual regression 
trees. In order to minimize the correlation between the individual 
learners in Bagging method, random forest algorithm performs an iter
ative procedure to randomly select candidate features [23]. To ensure 
that the constructed individual models consider the potentially predic
tive candidates rather than heavily relying on any individual feature, 
random forest uses a random subset of input features to construct trees at 
each iteration [15]. The optimum subset of features is obtained through 
cross-validation. 

3.1.3. Boosting 
While bagging aggregates independent learners, boosting follows a 

sequential process to create new models based on the preceding learners 
by correcting their errors iteratively [44,34]. More particularly, this 
algorithm trains the new learners to fit the residual of previous fits. This 
leads to a decrease in the bias in addition to reducing the variance. In 
general, the performance of the final model depends on the number of 
boosting learners and the total steps, that their optimum values are 
found by cross-validation. 

The subset creation in boosting method depends on the performance 
of the previous models. More specifically, in the initial round of the 
subset selection, boosting assigns equal weights to all samples to give all 
data points an equal chance to be selected. For each subsequent itera
tion, boosting updates the weights of the samples, so that, samples with 
wrong or low prediction rates can have a higher probability of being 
selected for training the new model. In this way, the next hypothesis is 

more likely to predict those inputs correctly. Ensemble learning even
tually combines the whole set to convert all these learners into a better- 
performing model. 

3.1.4. Application of ensemble learning techniques 
Individual regression trees are sensitive to the variability in data that 

can easily lead to overfitting training data with a tendency to find local 
optima and are also computationally expensive. EL techniques mitigate 
these issues by combining the predictions from many decision trees. 

Although EL techniques produce higher predictive accuracy, they 
have their own advantages and weaknesses. In general, EL techniques 
provide an efficient solution for most problems with nonlinear trends, 
but they may not be a suitable approach for problems that deal with time 
series analysis with identification of increasing/decreasing trends. 
Moreover, implementing EL techniques requires more computational 
costs to create and train multiple models than a single model. Therefore, 

Table 2 
Key advantages and disadvantages of EL techniques.  

Strategy Bagging Random Forest Boosting 

Advantages  • uses 
Bootstrap 
sampling 
method;  

• the 
combination 
of 
overlapping 
observations 
in training 
helps to 
overcome 
high 
variance;  

• prevents 
overfitting in 
the model;  

• produces high 
accuracy mainly 
due to its ‘wisdom 
of the crowds’ 
approach;  

• scales well 
computationally 
when new features 
or samples are 
added to the 
dataset;  

• runs efficiently on 
large databases; 
can handle 
thousands of input 
variables without 
variable deletion;  

• gives estimates of 
level of 
importance of 
variables in 
regression 
analysis;  

• generates an 
internal unbiased 
estimate of the 
generalization 
error as the forest 
building 
progresses;  

• has an effective 
method for 
estimating missing 
data and 
maintains 
accuracy when a 
large proportion of 
the data are 
missing.  

• takes care of the 
weightage of the 
higher accuracy 
sample and lower 
accuracy sample 
and then gives the 
combined results;  

• net error is 
evaluated in each 
learning steps. It 
works good with 
interactions;  

• helps when we are 
dealing with bias 
or underfitting in 
the data set; 

Disadvantages  • not helpful in 
case of bias or 
underfitting 
in the data;  

• ignores the 
value with 
the highest 
and the 
lowest result 
which may 
have a wide 
difference 
and provides 
an average 
result;  

• can overfit some 
datasets with 
noisy regression 
tasks;  

• for data including 
categorical 
variables, this 
technique is biased 
in favor of those 
attributes with 
more levels;  

• requires a 
meticulous tuning 
of 
hyperparameters;  

• often ignores 
overfitting or 
variance issues in 
the data set;  

• increases time and 
computation 
costs;  
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the trade-off between the complexity and the improvement in the pre
diction accuracy should be optimized based on available resources for a 
specific problem to solve. 

Depending on the problem characteristics, the most suitable EL- 
based strategy can be selected. For example, a problem with high vari
ance in data would most benefit from following bagging approaches, 
while boosting would be a great approach to solve a problem involving 
biased models. Table 2 highlights the key advantages and disadvantages 
of the different strategies. This study examines the implementation of 
the three EL-based strategies to test their efficiencies for estimating the 
seismic resilience of bridges. The comparative analysis of the results is 
then used to recommend the best-performed model for future 
applications. 

3.2. Implementation of ensemble learning methodology 

The initial step in developing predictive models using ML algorithms 
is to split data into two subsets to train the model and test its perfor
mance accordingly. This study randomly allocates 80% and 20% of data 
to training and testing, respectively. 

In the training process, the grid search method is used to combine 
with 10-fold cross-validation to tune the hyper-parameters such as the 
depth of the tree, the number of decision trees, and the size of each bag. 
The k-fold cross-validation technique prevents bias in sampling and is 
commonly used to randomly split k equal-sized samples. k-1 samples are 
used to train the model, while the remaining sample (also known as the 
validation set) is used for model validation to identify the optimum 
hyperparameters. The hyperparameters that minimize the cross- 
validation loss are selected. For example, in bagging method, 200 was 

Fig. 4. Supervised ensemble learning procedure.  

Fig. 5. General layout illustration of the bridge model.  
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found as the best number of learning cycles that results in the minimum 
mean squared error. The performance of the final models using the 
testing set is evaluated in terms of quantitative metrics such as predic
tion accuracy. The general procedure is illustrated in Fig. 4. 

4. Illustrative case study 

This study considers two-span continuous concrete box-girder 
highway bridges as a case study, with the configuration demonstrated 
in Fig. 5, that is representative of a very common bridge class con
structed in California. The considered bridges are modeled in three di
mensions in OpenSEES. The seismic behavior of bridges is analyzed 
based on three significant design periods, including pre-1971, 
1971–1990, and post-1990 eras and two different bridge portfolios 
with rigid diaphragm and seat abutments. These eras are defined ac
cording to the evolved seismic provisions in designing bridges in 

response to the deficiencies observed during the historic 1971 San Fer
nando and the 1989 Loma Prieta earthquakes [45]. The San Fernando 
earthquake unveiled the necessity of modifying bridge design codes to 
lower the observed vulnerabilities such as the shear failure of the bridge 
columns, typically in the plastic hinge region, and the pull-out of the 
longitudinal reinforcements. Hence, the reinforcement ratio and stirrup 
detailing have been changed in the later eras to improve the ductility of 
the columns and encourage columns to experience a ductile failure mode 
in extreme situations. 

This study follows a probabilistic seismic demand analysis by 
randomly choosing the bridge attributes from their probability distri
bution (Tables A.1 and A.2 in Appendix A) captured from the NBI [38] 
and review of bridge drawings. Interested readers are encouraged to find 
out more details about the analytical modeling procedure and bridge 
characteristics in other studies on the box-girder concrete bridges 
[42,49]. In addition to the treatment of uncertainty in the structural 

Fig. 6. Fragility curves of the investigated bridges.  
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parameters, this study considers the uncertainty associated with the 
excitations by applying Baker’s suite of ground motions, with scaling 
factors 1 and 2, that covers a broad range of spectral shapes and prop
erties pertinent to California region. This suite corresponds to shallow 
crustal earthquakes that were assembled for the PEER Transportation 
Research Program [10]. This study considers the key engineering de
mand parameters, including the curvature ductility of the columns, deck 
displacement, foundation rotation and displacement, and abutment 
displacements (passive, active, and transverse). The limit states or the 
component capacities [42] that are used in developing the fragility 
curves are listed in Appendix A (Table A.3). 

This study considers the vulnerability of multiple bridge compo
nents. Using the finite element models of bridges, the corresponding 
peak demand measures, such as the column curvature ductility, bearing 
and abutment deformations, are recorded. Then, PSDMs are developed, 
and the fragility analysis procedure is employed to generate analytical 
fragility curves for the bridge components and system. The results are 
displayed in Fig. 6 for the considered bridge types. Depending on the 
design eras, box-girder bridges consist of various numbers of column 
bents. For the pre-1971 era, bridges have either one or two-column 
bents, while for the later eras including 1971–1990 and post 1990, the 
number of column bents ranges from one to four and one to five, 
respectively. Previous studies [37] indicated that the seismic 

performance of single-column bent (SC) bridges noticeably differs from 
the multicolumn bents (MC) bridges, and consequently, MC bridges can 
be classified into a single class based on their similar performance. The 
median fragilities significantly change from pre-1971 to the other two 
eras, particularly for the complete damage level. This change is more 
noticeable for the MC bridges implying the higher impact that the im
provements in the seismic design of the columns had on multi-columns 
which reduces the vulnerability. 

5. Application to bridge resilience assessment 

5.1. Quantification of bridge resilience and data processing 

This section presents the application of the described framework to a 
realistic case study. Fig. 7 demonstrates the performance indicator, as 
defined in this study, for a range of bridge types and design codes. This 
figure shows the performance indicator of the bridge from the moment 
of seismic event occurrence, hence the sudden drop in performance at 
time zero. With the initiation of the recovery, the performance indicator 
starts to grow. Considering a time horizon of 1000 days, the perfor
mance indicator in high PGA intensities does not reach the original pre- 
failure magnitude. As can be expected, the performance indicator of a 
bridge is reduced with PGA intensity. Fig. 7 shows that the performance 

Fig. 7. Normalized performance indicator.  
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of bridges designed according to seismic provisions in post 1990 stan
dards is much higher than the same structural forms in pre 1990 eras. 
This figure also shows that in general rigid/integral abutments outper
form seat abutments. 

Using the framework presented in Section 2, resilience is calculated 
for each cohort of fragility curves as shown in Fig. 8. As expected, the 
considered resilience metric decreases with an increase in the level of 
earthquake intensity PGA (Fig. 8). This degradation trend is more drastic 
in the case of bridges designed based on pre-1971 codes. The results 
show that, by improving the seismic design codes, the resilience of 
bridges enhances in all scenarios. For example, for the bridge type: pre- 
1971 with seat abutment with MC, resilience drops to values close to 
zero at high PGA values, greater than 0.8 g. However, this happens at a 
later stage (~2.0 g) for the same bridge type that is designed in 
1971–1990, while for those that are constructed based on the post-1990 
codes, the minimum captured resilience is around 0.2. This is aligned 
with observations in corresponding fragility curves, in which the prob
ability of damage exceedance in post-1990 bridge designs is much lower 
than the pre-1971 and 1971–1990. 

Fig. 8 also shows that among different structure forms, bridges with 
SC and rigid/seat abutment demonstrate higher resilience in comparison 
to MC rigid/seat Abutment. This could be attributed to a variety of 
factors, such as the differences between the bridge geometries and the 
fixity conditions. Pinned end conditions are typically used for multi- 
columns, while the rotational movement is restrained for the single 
columns. For pre-1971 and 1971–1990 bridge designs, it can be seen 
that seat abutment offers a lower resilience in comparison to the rigid 
abutment. The comparison between multi-column bridge cohorts re
veals that although seat abutment demonstrates a lower resilience index 
in seismic intensities less than 0.5 g, it outperforms seat abutment 
structural form in higher intensities for post-1990 designs. This could be 
related to the applied retrofitting procedures. For the 1971–1990 era, 
the primary focus was to improve the performance of the non-ductile 
columns by steel or fiber jackets. However, the-post 1990 retrofitting 
program covered a wider range of issues such as increasing the height 
cap and number of piles for the footings and using longer retainers and 
seat extenders to prevent the abutment unseating. 

To investigate the impact of the fragility curves on the formulated 
resilience index, Fig. 9 shows resilience index profile vs probability of 
occurrence for different damage states, different bridge forms, and 
different seismic provisions. This figure shows that the defined resilience 
index is predominantly influenced by the fragility curves for the com
plete damage state. This can be explained by a relatively higher 

probability of occurrence in this damage state; however, the weight of 
the influence is reduced considering a lengthier profile of the recovery 
trajectory for this damage state. 

5.2. EL-based resilience models 

Each model described in Section 3 is trained with the training dataset 
for each considered bridge type. For the input variables, a list of sixteen 
parameters, listed in Table 3, is selected to cover features related to the 
material, geometric, and structural properties, and PGA, to predict 
bridge resilience as the outcome. Then, the seismic resilience is esti
mated for the testing dataset using the trained EL-based models. The 
predicted resilience values are compared with the analytically derived 
values obtained following the approach explained in Section 2. 

Researchers investigated various IMs in predicting the seismic de
mand of bridge components considering the metrics including effi
ciency, practicality, sufficiency, and proficiency. According to these 
analyses, several studies [41,42] that focused on common bridge port
folios in the risk assessment software package (HAZUS-MH, 201) rec
ommended PGA as the optimal IMs for probabilistic seismic demand 
analysis of a wide range of bridges. Therefore, for developing the ML- 
based resilience models, this study adopts PGA to study typical con
crete box-girder highway bridges. 

This section presents a statistical analysis of the EL-based models to 
predict resilience. The performance of the three EL algorithms is eval
uated in predicting the seismic resilience of the considered cohort of 
bridges. To assess the prediction performance of the EL-based models, 
statistical indicators including prediction accuracy (Equation (7)), mean 
squared prediction error (MSPE) (Equation (8)), and mean absolute 
prediction error (MAPE) (Equation (9)) are compared. While both MSPE 
and MAPE provide the averaged magnitude of the error, large errors 
have higher weights in the MSPE computation than that of MAPE since 
the first one uses a quadratic score while the latter uses a linear score. 
Hence, all individual predictions contribute equally to measuring MAPE. 

Prediction Accuracy = 1 −

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑n

i=1
(ŷi − yi)

2
√

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑n

i=1
(yi)

2
√ (7)  

MSPE =
1
n

∑n

i=1
(yi − ŷi)

2 (8)  

Fig. 8. Resilience Index for selected cohort of bridges.  
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MAPE =
1
n

∑n

i=1
|yi − ŷi| (9) 

In this equation, yi and ŷi represents the ith data point and its pre
dicted values, respectively, where n shows the total number of data 
points. These statistical indicators are provided in Tables 4 and 5 and 
Fig. 10. 

Overall, the results indicate that the ensemble models captured good 
results in terms of accuracy, MSPE, and MAPE. Although among the 
explored algorithms, there is not a single model that is constantly su
perior to the others, bagging models, with the highest prediction accu
racy (82%-95%) and lowest MSPEs and MAPEs (0.002–0.006 and 
0.022–0.045), take the first place for almost all scenarios. However, 

since the three EL-based models demonstrated comparable performance 
for all bridge cases, we could conclude that bagging, boosting and 
random forest can provide efficient alternatives to the resilience quan
tification approach as explained in Section 2. For example, for the post- 
1990 bridge type with the rigid diaphragm abutment, the difference 
between the accuracy of predictions provided by bagging is slightly (1% 
and 3%, respectively) higher than those obtained from boosting and 
random forest. Overall, the accuracy varies within 1 to 7 percentage 
among the three EL-based models. 

5.3. Influential features 

An essential step to better interpret the results obtained by the ML 

Fig. 9. Resilience Index vs probability of occurrence for each damage state.  
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approaches is to assess the contribution of input bridge characteristics to 
predicting resilience index. In addition to better understanding the most 
influential parameters in determining bridge resilience, the input vari
ables with a negligible relevant contribution can be identified so that 
they can be excluded to reduce model complexity and optimize model 
efficiency. To measure the level of importance of the variables, the EL 

algorithm, random forest, permutes the variables to monitor the aver
aged changes of the prediction errors and node impurities during the 
splitting process over all trees. Fig. 11 displays the importance of the 
variables measured using EL algorithms. These importance scores report 
the variance reduction due to the splits of a particular variable in the 
growth of regression trees. This implies how each variable decreases the 
impurity of the split. For each variable, the importance measure is 
averaged over all constructed trees. The values reported in Fig. 11 are 
the relative values (in percentages) of the computed importance mea
sures that indicates the level of contribution of each variable in pre
dicting the outcome. A larger variable importance score indicates a 
bigger contribution in the prediction. 

In general, the most predictive parameters are the PGA and number 
of column bents, while the least predictive ones are the types of soil 
(sand or clay) and girder (prestressed or reinforced concrete). The in
fluence of PGA can be explained by the importance of fragility curves in 
resilience index calculation, as shown and demonstrated in Fig. 7. While 
both PGA and structural parameters influence the shape of the fragility 
curves, in comparison to PGA, the impact of structural characteristics 
manifests in a gradual and subtle change in fragility curves. Hence, the 
influence of structural parameters on the resilience index is relatively 
smaller than PGA. Furthermore, the well-known recovery projection 
patterns utilized in this study are a function of damage state only. This 
can be further improved by defining and formulating the recovery 
projections as a function of different structural forms and characteris
tics; however, this is beyond the scope of this study. Further reflection in 
this figure shows that reinforcement ratio and superstructure depth are 
placed in the list of top five influential features for most cases. Foun
dation translational stiffness is also found in the high-rank parameters 
for bridges associated with the pre-1971 and 1971–1990 eras. Column 
height is found more significantly influencing the resilience of bridges 
with rigid diaphragm abutment than those with seat type abutments. In 
the case of bridges with seat abutments, column height is shown to have 
a greater influence on the resilience of bridges designed in earlier eras 
than the more recently constructed ones. On the contrary, deck width is 
found more influential for bridges with seat abutments than those with 
rigid diaphragms. 

The observed differences could be related to a higher vulnerability of 
some components of bridges, particularly the columns when they have 
been designed in earlier eras compared to those that belong to a more 
recent, advanced seismically-designed period. The differences between 
the results of bridges with seat and rigid abutments could be related to 
their structural performance when subjected to excitation. Since the 
rigid abutment is integrally connected to the bridge superstructure they 
move synchronically in a seismic event, while the seat abutment and the 
superstructure move independently of each other. 

6. Conclusion 

This paper explored the potential application of ensemble learning 
(EL) based machine learning (ML) algorithms including bagged and 
boosted trees and random forest to provide a reliable prediction of the 
seismic resilience of bridges. Sixteen parameters were investigated, as 
the input variables for developing the EL-based models. These param
eters are involved in the process of analytical development of probabi
listic seismic demand and fragility curves of bridges which are used to 
quantify the seismic resilience of bridges. 

To evaluate and verify the prediction capability of the EL-based 
models, the performance of the developed models was assessed via 
their prediction accuracies and the mean squared and relative errors. 
According to the comparisons, the three proposed EL-based predictive 
resilience models successfully predicted bridge seismic resilience, with 
an average accuracy greater than 84%, and generally performed well 
considering all three statistical indicators. Although the prediction ac
curacy does not vary significantly from one method to another, the re
sults show that the bagged trees-based model offers a lower means 

Table 3 
The list of input variables for the resilience models.  

Input 
variables 

Seismic analysis 
characteristic 

Input 
variables 

Seismic analysis 
characteristic 

x1 Soil type x9 Reinforcement ratio 
x2 Girder type x10 Abutment height 
x3 Span length x11 Foundation translational 

stiffness 
x4 Column height x12 Foundation rotational 

stiffness 
x5 Deck width x13 Concrete strength 
x6 Superstructure depth x14 Reinforcement strength 
x7 Number of columns per 

bent 
x15 Abutment stiffness 

x8 Column diameter x16 PGA  

Table 4 
Evaluation of the predictive models (prediction accuracy comparison).  

Bridge type Bagging Least-Squares 
Boosting 

Random 
Forest 

Pre 1971 – Rigid Diaphragm 
Abutment  

0.820  0.784  0.789 

1971–1990 – Rigid Diaphragm 
Abutment  

0.915  0.892  0.862 

Post 1990 – Rigid Diaphragm 
Abutment  

0.948  0.937  0.918 

Pre 1971 – Seat Abutment  0.826  0.802  0.754 
1971–1990 – Seat Abutment  0.915  0.867  0.849 
Post 1990 – Seat Abutment  0.935  0.909  0.895  

Table 5 
Evaluation of the predictive models (MSPE comparison).  

Bridge type Bagging Least-Squares 
Boosting 

Random 
Forest 

Pre 1971 – Rigid Diaphragm 
Abutment  

0.005  0.008  0.012 

1971–1990 – Rigid Diaphragm 
Abutment  

0.006  0.008  0.011 

Post 1990 – Rigid Diaphragm 
Abutment  

0.003  0.002  0.006 

Pre 1971 – Seat Abutment  0.005  0.007  0.009 
1971–1990 – Seat Abutment  0.002  0.004  0.011 
Post 1990 – Seat Abutment  0.002  0.004  0.007  

Fig. 10. Evaluation of the predictive models (MAPE comparison).  
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squared and relative errors in comparison to other models, hence 
providing a consistently superior prediction performance in all bridge 
types. This suggests that the nature of the resilience metric used in this 
study is better predicted by a multi decision tree classifier as it reduces 
the likelihood of over-fitting. This method also performs better for high- 
dimensional input data. 

Moreover, the feature importance of the considered variables was 
measured, and a ranking based on the level of contribution that each 
variable has in predicting the seismic resilience of bridges was provided. 
The intuition from the features ranking and the identification of the most 
and least influential parameters is beneficial to making informed de
cisions in the resilience assessment of bridges and developing parsimo
nious models. The ground motion intensity (PGA) and the number of 
bridge columns per bent were identified as the most influential features 
by taking first place in all investigated scenarios. Furthermore, the type 

of superstructure girder and soil had the lowest contribution in the 
predictions. 

This study presented EL-based methodologies to provide insights 
towards the application of ML algorithms in the seismic resilience as
sessments of bridges. Future studies on the vulnerability assessment of 
the bridge system can address the limitations of the presented work. For 
example, while this study confirmed the efficiency of EL-based methods 
in predicting the seismic resilience of box-girder bridges, the general
ization of the findings from this study can be tested by analyzing other 
bridge types such as I- and T-girder bridges. Besides, future works can 
investigate the sensitivity of bridge resilience to different ground motion 
characteristics, in addition to the considered PGA in this study. 

Fig. 11. Features ranking based on their level of importance measures in predicting bridge resilience.  
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Appendix A 

This appendix presents the general modeling properties of the 
considered concrete box-girder bridges. More details about the bridge 
modeling procedure and the bridge characteristics can be found in 
previous works (Ramanathan, 2012; Soleimani, 2017). A uniform dis
tribution is considered for the longitudinal reinforcement ratio of the 
columns with the lower and upper bounds equal to 1.4 and 2.4, 1.0 and 
3.7, and 1.0 and 3.5 for pre 1971, 1971-1990, and post 1990 design eras, 
respectively. For the transverse reinforcement ratios, #4 stirrups with 
12-inch spacing are adopted for bridges designed before 1971. However, 
uniform distribution with lower and upper bounds of 0.3 and 0.9, and 
0.4 and 1.7 are considered for the 1971-1990 and post 1990 eras. 
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Table A.1 
General bridge modeling properties (Ramanathan, 2012; Soleimani, 2017).  

Bridge parameters Distribution Units Mean Standard 
deviation 

Concrete compressive 
strength 

Normal ksi 5.0 0.63 

Reinforcing steel yield 
strength 

Lognormal ksi 4.21 0.08 

Span length Empirical ft 114.8 40.5 
Deck width Empirical ft 67.2 42.2 
Vertical under clearance Empirical ft 18.0 3.7 
Abutment concrete pile 

effective stiffness 
Lognormal kip/ 

in 
80.0 0.3 

Damping Normal - 0.045 0.0125  

Table A.2 
General bridge modeling properties (Ramanathan, 2012; Soleimani, 2017).  

Bridge parameters Distribution Units Lower 
bound 

Upper 
bound 

Shear modulus of elastomeric 
bearing pads 

Uniform ksi 80 250 

Abutment backwall height Uniform ft 3.5 8.5 
Gap between deck and seat type 

abutment backwall 
Uniform in 0 1.5 

Restrainer cable length Uniform ft 8 20 
Mass factor Uniform - 1.1 1.4  

Table A.3 
Component capacities adopted in this study (Ramanathan, 2012; Soleimani, 
2017).  

Engineering demand 
parameter 

Eras Units DS1 DS2 DS3 DS4 

Column curvature ductility Pre 1971 NA 0.8 0.9 1.0 1.2  
1971- 
1990 

NA 1.0 2.0 3.5 5.0  

Post 
1990 

NA 1.0 4.0 8.0 12.0 

Deck displacement All Inches 1.0 3.0 10.0 15.0 
Foundation rotation All Radian 1.5 6.0 NA NA 
Foundation displacement All Inches 1.0 4.0 NA NA 
Bearing displacement All Inches 1.0 4.0 NA NA 
Abutment passive 

displacement 
All Inches 3.0 10.0 NA NA 

Abutment active 
displacement 

All Inches 1.5 4.0 NA NA 

Abutment transverse 
displacement 

All Inches 1.0 4.0 NA NA  
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