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A B S T R A C T

Bridge columns are known as the most vulnerable components of a bridge and operate as the core substructure
elements of the bridge support system. Post-earthquake evidence reveals that large deformation and extensive
damage of bridge columns are linked to the force and deformation capacity of the columns. Since research on the
seismic vulnerability of bridges with various column shapes is limited, this paper aims to address this deficiency
by evaluating the seismic performance of a variety of common column shapes. This analytical study involves
assessing circular, rectangular, and oblong-shaped columns. Each shape of the column is tested as prismatic or
flared along the column height as many of the bridges, constructed after 1970 in high seismic zone areas like
California, are supported by flared columns. First, the study concentrates on assessment of several different
column shapes as individual elements through both monotonic and cyclic pushover analysis. Second, a complete
bridge system is investigated for the impact of the cross-section shapes and column flares on the fragility as-
sessment findings. This article deals with the seismic vulnerability assessment of box-girder types bridges. A set
of numerical bridge models that accounts for geometric and material uncertainties according to the California
bridge characteristics is created in OpenSees. According to the results, oblong columns display less fragility
compared to the other column shapes. The comparison of the seismic analysis for prismatic and flared columns
shows the vulnerability of flared columns. The findings indicate that neglecting the effect of column shapes on
the bridge fragilities leads to an unreliable estimation of the seismic risk and associated losses.

1. Introduction

Bridges are the critical links in a transportation network and their
seismic vulnerability can lead to large economic losses. Bridge vulner-
ability can be assessed by developing fragility curves that indicate
probability of reaching or exceeding a specific level of damage.
According to the plan review of the existing box-girder bridges in
California, the typical configuration of bridge columns consists of cir-
cular and rectangular cross-section shapes (Fig. 1) with constant cross-
section dimensions along the column height also known as prismatic
columns. However, other column configurations exist that can alter the
seismic performance of columns and bridges. These configurations in-
clude oblong and flared columns. The seismic fragility analysis of many
types of highway bridges in the United States has been explored. Al-
though non-prismatic columns or non-typical column cross-section
shapes support many bridges in the United States, most existing studies
on fragility analysis [1–10] focus on bridges supported by prismatic
columns with circular or rectangular cross-sections. In order to de-
termine the effects of various column shapes, the current study attempts

to evaluate the seismic performance of bridges with oblong and flared
columns.

Using oblong column shapes in box-girder bridges can considerably
reduce the required amount of transverse reinforcement, as the oblong
cross-sections include interlocking spirals. These spirals confine the
core concrete more effectively than single spiral confinements and
rectangular hoops. Additionally, when a cross-section includes over-
lapping confinements, fabrication is easier for interlocking spirals than
for overlapping rectangular hoops. Tanaka and Park [11] tested four
column specimens to study the behavior of columns with interlocking
spirals; one with a rectangular shape that contained rectangular hoops,
and three with oblong cross-sections that contained interlocking spirals.
The tests were performed by applying constant axial loads, equal to ten
percent of the axial capacity of the column, and cyclic horizontal loads
to the tops of the columns. The experiments showed that the oblong-
shaped columns outperformed the rectangular columns in the aspects of
stable hysteresis loops, greater energy dissipation, and limited strength
reduction up to a displacement ductility demand of approximately 10.
Wu, et al. [12] investigated the effect of transverse confinements on the
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performance of oblong and rectangular bridge columns in which either
tie or spiral reinforcements were used. Four columns were tested, using
combined axial and flexural loadings during the tests. The commonly
used column cross-sections are circular and rectangular. A spiral re-
inforcement scheme is typically advised for circular cross-sections while
tied rectangular hoops are typically advised for rectangular cross-sec-
tions. In order to take advantage of the benefits of spiral reinforcement,
Wu et al. proposed an innovative transverse reinforcement arrangement
for rectangular-shaped columns. This arrangement included two central
interlocking spiral reinforcements similar to the oblong cross-section.
However, four small spirals at the corners of the rectangular cross-
section were also added to the section. All of the tested columns dis-
played satisfactory ductile behavior. Although the two oblong columns
exhibited similar behavior, Wu et al. [12] illustrated the improved
performance of rectangular columns with spiral reinforcement com-
pared to the tied columns. Ingham et al. [13] conducted a set of ex-
periments at UCSD on large-scale bridge knee-joints, which had a pre-
1970 design. The as-built and retrofitted units were tested, and the
columns had interlocking spirals. The observed damage during cyclic
loading tests of the as-built unit indicated that there were insufficient
transverse reinforcements within the joint. However, the retrofitted
units with more confinements helped to prevent lap splice failure and
inelastic action in the joint. The columns had interlocking spirals. Ou
et al. [14] focused solely on the shear behavior of oblong columns, with
several different transverse reinforcement schemes, including the con-
ventionally-tied, two-spiral interlocking, and seven-spiral interlocking
reinforcements. They proposed the seven-spiral configuration since the
large size of the two-spiral oblong columns often poses challenges for
fabrication and transportation. The tested columns with their proposed
seven-spiral configuration effectively addressed the size issue and
showed better performance with greater effective shear coefficients
compared to the conventionally-tied columns, while remaining inter-
locked during the entire experiment.

In addition to typical columns, which have a prismatic configura-
tion, flare-shaped columns with one-way and two-way flares (Fig. 2)
also exist. Besides the architectural inclination, one-way flared columns
are commonly used in post-1970 bridges to provide more support to the
cap beam under eccentric live loads. Flared columns are constructed in

two different ways by either integrating them to the superstructure
(these are called connected flares), or by connecting them to the su-
perstructure with a gap in between (these are called isolated flares).
The latter type is typically seen in bridges designed after 1990. Sanchez
et al. [16] conducted experimental studies on flared columns and
concluded that the seismic performance of isolated flares is similar to
prismatic columns. This paper is limited to connected, one-way flared
columns.

Nada et al. [17] conducted an experimental and numerical study on
four flared specimens in which two specimens were designed to display
flexural dominant behavior, while the remaining two shorter columns
were designed to exhibit shear dominant behavior. Each of the two
column types contained different transverse reinforcement designs. One
was designed to have consistent confinement along the column height,
and the other was designed to contain higher confinements at the top
third of the column height. The columns were subjected to eleven
ground motions simulated by a shake table. The study showed sa-
tisfactory ductile behavior for all tested specimens. Nada et al. [17]
strongly recommended including a gap between the short columns and
the superstructures since their analysis showed premature failure
caused by brittle shear damage. In the case of isolated columns, ex-
tensive shear cracks were observed since the gap was closed at a low
ductility ratio. As a consequence, the load carrying capacity was in-
creased which caused higher load transferring to the columns. Wehbe
et al. [18] examined four half-scaled flared bridge columns. The spe-
cimen designs were according to the 46th and 60th percentages of
minimum confinements required by AASHTO. The columns were sub-
jected to quasi-static cyclic lateral loadings. Two different longitudinal
reinforcement arrangements were used in the tests. In one arrangement,
reinforcements were placed along the flares, while in the other, re-
inforcements were located mainly in the core area. Test results showed
higher vulnerability for the flared columns with longitudinal re-
inforcements distributed along the flares and not concentrated in the
core area.

While a number of researchers have studied the seismic perfor-
mance of bridge columns with various shapes, the effect of column
shapes (cross-section and flares) on the fragility assessment of bridge
columns and systems is not yet well-known. The current study attempts
to address this research gap by evaluating the seismic performance of a
typical bridge column as an individual element and as a component of a
bridge system. This numerical study is divided into two stages where
the structural characteristics of existing box-girder bridges located in
California are used as a case study to generate finite element models.
First, three-dimensional numerical models of a typical bridge column
were created in OpenSees; the models include columns with various
common shapes including circular, rectangular, and oblong cross-

Fig. 1. Cross-section of reinforced concrete columns with various shapes.

Fig. 2. One-way and two-way flared columns ac-
cording to the Caltrans Seismic Design Code [15].
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sections, as well as prismatic and flared columns. The numerical models
were validated with previous experiments performed on the column
shapes that are considered in this study (Section 2). Then, seismic as-
sessment of typical bridge columns was conducted through a set of
monotonic and cyclic pushover analysis (Section 3). Second, a three-
dimensional numerical model of a typical box-girder bridge was de-
veloped using a variety of column shapes. Using a selected set of ground
motions, nonlinear time history analysis was performed on the models
to derive structural responses. Next, the seismic performance of the
bridge models was evaluated by comparing their probabilistic seismic

demands, particularly the column displacement ductility demand
(Section 4). Since developing probabilistic seismic demand models is an
essential step toward generating fragility curves, the comparison of the
seismic demands provides initial insight into the influence of column
shape on the fragility assessment of bridge components. The evaluation
process was then continued to produce fragility curves for the various
bridge components and the bridge system (Section 4). Assessment of the
generated curves indicates the impact of column shapes on the bridge
fragility assessment.

Fig. 3. Column configurations in box-girder bridges for: (a) Prismatic columns, (b) Flared columns, (c) Type I cross-section shapes, (d) Type II cross-section shapes, (e) Type III cross-
section shapes, (f) OpenSees material objects assigned to the fiber cross-section.
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2. Modeling of bridge columns

2.1. Numerical model

This case study focuses on the most common standardized column
shapes in California box-girder bridges. According to the existing bridge
configurations, column shapes are categorized into three main cate-
gories with layouts shown in Fig. 3: Types I and II fall under the cate-
gory of prismatic columns (Fig. 3a), while Type III is representative of
flared columns where stepped discretization (Fig. 3b) is used to create
their numerical models. Type I columns are defined as circular or
square-shaped cross-sections in which two adjacent sides have equal
lengths, while Type II columns are oblong or rectangularly-shaped, with
unequal adjacent sides in the cross-sections.

Displacement-based beam-column elements with fiber-defined
cross-sections were used in OpenSees [19,20] to create three-dimen-
sional models of a bridge column (Fig. 3). Fiber elements have a distinct
advantage of assigning unique material properties to different locations
across a member’s cross-section. Concrete 07 and Steel 02 materials in
OpenSees were used to model concrete and reinforcing steel, respec-
tively. The Chang and Mander [21] model was used to define the
monotonic stress-strain curves of confined and unconfined concrete.
The Menegotto and Pinto [22] model, later modified by Filippou et al.
[23], was used to add isotropic strain hardening for the reinforcing
steel. The bond-slip is not modeled in the current study as the splicing
of the longitudinal reinforcement with starter bars extending from the
footing is not a common design feature of bridges constructed after
1970. Note that the strain penetration effect is not modeled in the
current study as the cyclic force-displacement response is not sig-
nificantly affected by the strain penetration effect for the selected
bridge columns [24]. A more comprehensive description of the nu-
merical modeling of bridge columns can be found in the work of So-
leimani [25].

2.2. Verification of numerical model

One initial step in an analytical study is to test the efficacy of

modeling assumptions. In order to validate the model with the afore-
mentioned column shapes, three-dimensional finite element models of
the specimens were generated in OpenSees and compared to four
column tests selected from previous experiments. The experiments in-
clude shake table tests at UC San Diego [26] and cyclic pushover tests
by Tanaka and Park [11], and Sanchez et al. [16]. Based on a com-
parison of the numerical results and experiments data, insights are
provided on each of the specimens. A detailed description of the four
column tests is provided in the following.

To validate the numerical model of the first columns type (type I), a
full-scale reinforced concrete (RC) bridge column test was chosen. This
test was performed on the NEES Large High-Performance Outdoor
Shake Table located at UCSD’s Englekirk Structural Engineering Center.
The RC cantilever column was designed according to Caltrans seismic
design specifications and was supported on a fixed foundation. Fig. 4
shows the test specimen and the setup for the experiment. The nu-
merical modeling parameters, shown in Table 1, are according to the

Fig. 4. (a) Details of the UCSD column design, (b) Reinforcement detailing of the UCSD column, (c) selected ground motions.

Table 1
Parameters used in the OpenSees model for the UCSD column test.

Parameters Values

Diameter of the column 1.22m (4 ft)
Column height 7.31m (24 ft)
Longitudinal reinforcements 18 #11
Transverse reinforcements (hoops) Double #5 @152mm (6 in)
Clear cover 51mm (2 in)
Concrete strength 41.9MPa (6.1 ksi)
Modulus of elasticity 22877MPa (3317 ksi)
Concrete compressive strain at maximum

compressive stress
0.0026

Yield strength of longitudinal steel 518.5 Pa (75.2 ksi)
Yield strain of longitudinal steel 0.0026
Ultimate strength of longitudinal steel 706.7MPa (102.4 ksi)
Modulus of elasticity of longitudinal steel 196057MPa (28426 ksi)
εsh of longitudinal steel 0.011
Esh of longitudinal steel 5515.5MPa (800 ksi)
εu of longitudinal steel 0.122
Yield strength of hoops 337.9MPa (54.8 ksi)
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provided values in the published report [26] regarding to the UCSD
tests. The details of the column design and reinforcement are provided
in Fig. 4. The specimen was subjected to six ground motions (Fig. 4)
simulated by a shake table at UCSD. Similarly, the column’s numerical
model was subjected to the same set of motions. Nonlinear time history
analysis was performed in OpenSees, and dynamic responses of the
numerical model were captured. The responses include the column top
displacement, the shear force at the base, and the bending moment at
the column base. The response comparison of the full-time history
analysis (Fig. 5) confirms that the analytical and experimental results
are in agreement.

To validate the numerical models of column Types II and III, full-
scale RC bridge column tests by Tanaka and Park [11], and Sanchez
et al. [16] were chosen, respectively. The oblong cantilever column
tested by Tanaka and Park [11] was designed according to the column
provisions in the New Zealand concrete design code [27]. Sanchez et al.
[16] constructed flared and prismatic columns according to Caltrans
design code. Figs. 6 and 7 show the detailing of the column designs. In
both studies, the columns were subjected to constant axial loads and
cyclic horizontal loadings (Figs. 6 and 7). In the oblong cantilever
column test, the cyclic horizontal load imposed on the specimen in-
cluded one elastic cycle corresponding to a displacement ductility
factor = ±μ 0.75d and two cycles for each of the factors

= ± ± ± ±μ 2, 4, 6, 8d . In the other test, the displacement ductility factors
used for applying the cyclic lateral loads were

= ± ± ± ± ± ± ±μ 1, 1.5, 2, 3, 4, 5, 6d and = ± ± ± ±μ 0.56, 0.86, 1.15,d
± ± ±1.72, 2.30, 2.88, 3.45for the prismatic and flared column, respectively.

These experiments were simulated in OpenSees using similar cyclic
loadings and performing cyclic pushover analysis. Then, the numerical
results were compared with the experimental data. As shown in Fig. 8,
the numerical simulations are fairly able to predict the real columns’
performance.

The validation process indicates that the numerical modeling tech-
nique used in this study can provide a realistic behavior model for
bridge columns with various shapes. In the following section, a typical

bridge column is modeled with the commonly used structural char-
acteristics and its seismic performance is evaluated by varying the
column shape.

3. Analytical evaluation of the columns’ performance

This section provides an investigation of the columns behavior
under both monotonic pushover and cyclic lateral loading. A general
method of pushover analysis about the longitudinal and transverse axes
was applied. The columns were assumed to be cantilevers subjected to
constant axial loads equal to ten percent of their axial capacity ′f A( )c g .

The input parameters for the tested columns are presented in
Table 2. A detailed plan review of existing bridges in California was
conducted to extract the probability distributions of the required
modeling parameters. These distributions are used in the bridge fragi-
lity analysis presented in the next section while the mean values of the
modeling parameters (Table 2) are selected for the analysis of the
columns in the current section. Four main cases, circular prismatic (CP),
rectangular prismatic (RP), oblong prismatic (OP), and flared columns
(Fl), are considered in this study. The dimensions used in this section
are the most common ones, based on review of the California bridge
inventory. The bridge design details manual lists three standard column
sizes as 4, 5.5, and 7 feet (1.2, 1.7, and 2.1m) for an equivalent circular
column. Reviewing the existing bridge plans revealed that the majority
of circular single columns have a 5.5 feet (1.7 m) diameter and the
majority of circular multi-column bents have a 4 feet (1.2 m) diameter.
Similarly, the other cross-section dimensions were selected based on the
existing bridge population. The possible number of columns for a multi-
column bent bridge includes: two and three columns for bridges de-
signed before 1970 and two to five columns for bridges designed after
1970. The column cross-section areas are approximately similar in the
four considered cases. In order to have a fair comparison of only the
effect of column shapes, it is essential to keep all structural character-
istics such as reinforcement ratios and column height the same. Axial
and moment capacities were similar between shapes to make a fair

EQ1

(a)

EQ5

(b)

(c) (d)

EQ1

(d)

EQ5

Fig. 5. Comparison of the results of the numerical simulations with those of the UCSD tests; (a) column top displacement (EQ1), (b) column top displacement (EQ5), (c) bending moment
at column base (EQ1), and (d) bending moment at column base (EQ5).

F. Soleimani et al. Engineering Structures 153 (2017) 460–478

464



comparison. In order to account for the differences in bridge design
code, separate analyses were performed for the specifications of bridges
designed before and after 1970.

First, monotonic pushover analysis was conducted on the columns
in both longitudinal and transverse directions of the columns. As shown
in Fig. 9, two different patterns can be observed based on the direction
of applied load, the arrangement of the longitudinal reinforcements,
and the geometry of the confined concrete. In the longitudinal direction
(Fig. 9), the rectangular cross-section shows the highest strength be-
cause the steel reinforcement is arranged at the farthest distance from
the center which increases the moment of inertia of transformed section
and, subsequently, the stiffness and strength. Two additional cross-
section shapes with similar modeling properties and cross-sectional
area were analyzed to verify the comparisons. One (SP in Fig. 9) is a
square cross-section shape, and the other (36×48 rectangle, ERP in
Fig. 9) is a rectangular cross section with dimensions between the
square (SP) and original rectangular (RP) section. The strength and
stiffness were shown to differ with shape with the lowest value corre-
sponding to the circle (CP), then square (SP), and then to the two
rectangles (RP and ERP). The two rectangular shapes exhibited the
highest values for strength and stiffness as the cross-section is elongated
in the longitudinal direction which changes the reinforcement ar-
rangement and the geometry of the confined concrete. This phenom-
enon is reversed in the transverse direction. The oblong column has a
response that is similar to the circular column in the longitudinal di-
rection and the rectangular column in the transverse direction, due to
the nearly similar arrangement of the rebar. The columns with flares

display higher resistance (i.e. higher strength and stiffness) than cir-
cular columns in both directions. That is the result of keeping the de-
tails of the non-flared sections of the flared column (from footing to half
of the column height, Fig. 3b) identical to those of the prismatic col-
umns, while the flared sections include an additional layer of re-
inforcement, similar to the layout shown in Fig. 7, and the cross-section
dimension increases along the column height. Clearly, circular columns
have identical responses in both directions because of the symmetry of
the shape and the reinforcement. Additionally, increasing the re-
inforcement ratio while decreasing the confinement spacing enhances
the load-carrying capacity of the column during deformations.

Second, a cyclic pushover analysis was performed on the columns to
examine the hysteretic loop. The displacement cycles are defined based
on the yield displacement of the longitudinal reinforcements. The yield
displacement was calculated using the deformation components in-
cluding flexural deformation, bar slip, and shear deformation. Their
contributions in the yield displacement experienced by a column spe-
cimen can be represented as = + +Δ Δ Δ Δy flexural slip shear , and each of
these deformations can be calculated based on empirical equations
[28]. The highest contribution corresponds to the flexural deformation
that emerges when a moment load is generated in the column, and a
lateral displacement occurs at the end of the column. For a column that
is considered to be fixed at both ends against rotation, a linear variation
in curvature over the column height is assumed, and the flexural dis-
placement contribution in the yield displacement can be calculated as

= LΔ Φ /6flexural y
2 , where L and Φy are the column height and the cur-

vature at the yield initiation point of the longitudinal reinforcements.

Fig. 6. Layout of the oblong columns tested by Tanaka and Park [11]; (a) Details of the column design, (b) Reinforcement arrangement, (c) Displacement ductility levels.
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The contribution of the shear and slip deformation are less than the
flexural deformation; however, they will be counted in this study. The
contribution of these deformations can be calculated using

= M GAΔ 2 /shear y V and = Ld F uΔ Φ /8slip B YL y , where My and AV are the
moment at first yield of the longitudinal reinforcement and the shear

area of the column section, dB and FYL are the diameter and the yield
stress of the longitudinal reinforcements, and = ′u f6 c is the bond
stress between the longitudinal reinforcement and the footing. The
calculation of the total yield displacement requires estimations for
Φyand My using the moment-curvature relationships. This relationship

Fig. 7. Layout of the flared column tested by Sanchez, et al. [16]; (a) Details of the column design (inverted column), (b) Reinforcement arrangement, (c) Displacement ductility levels for
prismatic column, (d) Displacement ductility levels for flared column.
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(a)

Load Load

(b)

Load

(c)

Fig. 8. Comparison of the lateral force versus lateral displacement hysteresis loops for: (a) oblong column (Fig. 6), (b) prismatic column, and (c) flared column (Fig. 7).

Table 2
Geometric parameters used in modeling cantilever columns for pushover analysis.

Parameters Column name

CP RP OP Fl

Cross-section

Type I II II III

Cross-section dimensions (in)
Single column 66 36×96 48×72 66 & a=2′ 9″
Multi-columns (⩾ 2) 48 36×48 36×48 48 & a=2′

Cross-section dimensions (mm)
Single column 1676.4 914.4× 2438.4 1219.2× 1828.8 1676.4 & a=838.2
Multi-columns (⩾ 2) 1219.2 914.4× 1219.2 914.4×1219.2 1219.2 & a=609.6

Column height
Pre-1970 (ft) 21.5 21.5 21.5 21.5
Pre-1970 (m) 6.55 6.55 6.55 6.55
Post-1970 (ft) 24.0 24.0 24.0 24.0
Post-1970 (m) 7.32 7.32 7.32 7.32

Longitudinal reinforcement (%)
Pre-1970 1.9 1.9 1.9 1.9
Post-1970 2.35 2.35 2.35 2.35

Transverse reinforcement
Pre-1970 #4 @ 12″ #4 @ 12″ #4 @ 12″ #4 @ 12″
Post-1970 #4 @ 3″ #4 @ 3″ #4 @ 3″ #4 @ 3″
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is determined based on an OpenSees standard section analysis that re-
lies on the assumption that plane sections remain plane. Based on the
calculated yield displacements, the cyclic levels were set to be

= ± ± ± ± ± ± ± ± ± ±
± ± in

Δ 0.257, 0.514, 0.771, 1.03, 1.54, 2.06, 2.57, 3.6, 4.6, 5.65,
6.68, 7.71( )

. As

shown in Fig. 10, the cyclic behavior pattern across different cross-
section shapes is similar to the observations from the monotonic
pushover analysis (Fig. 9b). However, the strength degradation can be
analyzed in the cyclic testing. This degradation happens at earlier levels
in the flared columns, while it only occurs at the latest cycles for the
other column shapes. The circular column shows a smooth degradation
that increases during the last few cycles, whereas the rectangular and
oblong columns display a drastic decrease in the strength in the last
cycle.

In the following section, the influence of various column shapes on
the seismic performance of the bridges is evaluated.

4. Seismic analysis

A hypothetical box-girder bridge with the structural properties of
California bridges was modeled in three-dimensions in OpenSees.
Table 3 provides a description of bridge class varieties that are con-
sidered in this study. The bridge layout and the backbone curves used in
the components modeling are presented in Fig. 11. As shown in Fig. 11,
each analysis needed to be conducted twice for the two types of rigid
and seat abutments. A detailed plan review of the existing bridges in
California was conducted to extract required data to consider un-
certainties. Table 4 provides the probability distributions and asso-
ciated parameters of the required modeling parameters such as the
yield strength of the steel (fs) and the unconfined standard compressive
strength of concrete (fc) which are considered as random variables.
Interested readers are directed to the work of Soleimani [25] for a more
detailed explanation of the modeling parameters. Similar to the analysis

provided in the previous section, the four cases of column shapes (CP,
RP, OP, and Fl) were considered in the bridge study. Additionally, two
separate sets of analysis were performed in order to account for the
variations in reinforcement ratios and column heights in design codes
written before and after 1970.

Nonlinear Time History Analysis (NLTHA) was performed on the
bridge models using Baker’s suite of 160 ground motions [29]. These
excitations have longitudinal and orthogonal components, and are
randomly oriented to the longitudinal and transverse directions of the
bridge models. The results of this analysis provided the peak seismic
response for each of the bridge components. The peak responses were
used to produce probabilistic seismic demand models (PSDM). A
probabilistic seismic demand model (PSDM) is a regression model ex-
pressing the relationship between seismic demand (D) and ground
motion intensity measure (IM). Based on this regression model, the
median value of the seismic demand (SD) can be estimated for a specific
intensity measure as

=S a IM· ,D
b (1)

where a and b are the regression coefficients that are obtained by
performing a regression analysis on −D IM pairs. For this study, Sa-1.0 s
(i.e. the spectral acceleration at 1.0 s) was chosen since it was de-
termined as the optimal intensity measure for developing fragility
curves of box-girder bridges [8]. Dispersion (βD IM| ) is calculated based
on

∑
=

−

−
==β

D S

N
N

(ln( ) ln( ))

2
, ( total number of data points).D IM

i

N

i D

|
1

2

(2)

In order to generate fragility curves for the bridge system, the PSDM
should be developed for each of the bridge components (e.g. columns,
abutments, foundations). The bridge column vulnerability has a major

(a) (b)

Load Load

Fig. 9. Comparison of monotonic pushover analysis of the considered columns (Table 2) in this study in (a) longitudinal and (b) transverse directions.
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contribution to the overall bridge system fragility. As a result, column
displacement ductility, defined as the ratio of the ultimate displacement
to the yield displacement, is assessed in this study. Figs. 12 and 13
depict the two-parameter lognormal probability distribution of the
column ductility based on the ground motion intensity measure. Each
row in Figs. 12 and 13 corresponds to the PSDM plots of a specific
bridge type mentioned in the figure captions. The description of the
nomenclatures used for the considered bridge classes in this paper can
be found in Table 3. Moreover, each column includes the plots of a
particular cross-section shape.

Among the developed PSDMs, those of the oblong cross-sections
have noticeably different slopes. More specifically, in all bridge types
(Figs. 12 and 13), the slopes of the oblong column models are the lowest
between the considered column shapes. In contrast, the highest slopes
of the PSDMs belong to the flared shape columns, in almost all cases. No
specific pattern is observed between circular and rectangular column
shapes. These findings are not restricted to a particular abutment type,
number of columns per bent, or the era when the bridge was designed.

The developed PSDMs were used to establish the fragility curves.
This research study also aims to investigate the effect of column shapes
on the fragility analysis of a bridge, and follows the work of Nielson [4]
and Ramanathan [8] to evaluate the fragility of bridge components at
four different damage states: slight, moderate, extensive, and complete.
Table 5 provides HAZUS [30] definitions of the four bridge damage
states. At a chosen intensity measure, the probability that the seismic
demand (D) of a component exceeds its capacity (C) can be assessed by
fragility curves. A lognormal distribution of demand and capacity is
assumed [31], and the probability of reaching or exceeding a specific
damage state for a particular component is then estimated with the use
of the probability equation
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where, SC is the median estimate of the capacity, βC is the dispersion of
the capacity, and Φ(•) is the standard normal cumulative distribution
function.

The capacity limit states used for the displacement ductility and the
other demand parameters were derived based on previous experimental
results [25]. Figs. 14 and 15 demonstrate the fragility curves of bridge

Fig. 10. Comparison of cyclic pushover analysis for (a) CP, (b) RP, (c) OP, and (d) Fl columns listed in Table 2, in the transverse direction.

Table 3
Description of nomenclature for bridge classes considered in this study.

Nomenclature Classification

Abutment Design era Number of columns per
bent

DBSC Rigid diaphragm
(D)

Pre-1970 (B) Single (SC)

SBSC Seat abutment (S) Pre-1970 (B) Single (SC)
DBMC Rigid diaphragm

(D)
Pre-1970 (B) Multiple ⩾( 2) (MC)

SBMC Seat abutment (S) Pre-1970 (B) Multiple ⩾( 2) (MC)
DASC Rigid diaphragm

(D)
Post-1970
(A)

Single (SC)

SASC Seat Abutment (S) Post-1970
(A)

Single (SC)

DAMC Rigid diaphragm
(D)

Post-1970
(A)

Multiple ⩾( 2) (MC)

SAMC Seat abutment (S) Post-1970
(A)

Multiple ⩾( 2) (MC)
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columns when different types of column shapes are used in the models.
Each plot depicts the column vulnerability at slight, moderate, ex-
tensive, and collapse damage state. The plots that are placed in the
same row correspond to an identical bridge type with the four con-
sidered column shapes, CP, RP, OP, and Fl. Hence, each column in the
figures shows the fragility curves for various bridge types (e.g. different
abutment types) but similar column shapes.

As is shown in Figs. 14 and 15, the column seismic vulnerability of
seat-type abutment bridges is generally higher than that of integral-type
ones. Comparing the fragilities of each row reveals that the oblong
column shapes are less fragile than any other column shape at four
damage states. The results show that when oblong columns are used,
the seismic vulnerability of the column decreases in bridges with either
seat- or rigid-type abutments. In other words, oblong bridge columns
are the least vulnerable due to the more effectively confined area of the
cross-section. Although flared columns represent a higher strength
compared to prismatic in the pushover analysis, they are more prone to
damage in the time history analysis. In particular, the fragility curves of
bridge columns indicate a higher probability of damage for bridges
consisting of flared columns in comparison to those made of straight
columns. This is the result of the inconsistent cross-section along the
column height and more specifically the elongation of the cover con-
crete area.

Another finding is that at low and medium damage levels for
bridges with multiple columns per bent, there is not a noticeable dif-
ference observed between the performances of columns with various
shapes. However, these performances become more distinctive at the
higher damage levels. This is because the column shape plays a more
significant role in providing the column’s stiffness at larger displace-
ment capacities and, accordingly, at larger deformations. More speci-
fically, the column shape affects the reinforcing details, which define
the column ductility demands and the seismic resistance.

The failure probabilities of bridge columns are presented in Table 6.
The likelihood of observing damage can be compared at any level of

Fig. 11. Numerical modeling of various bridge components.

Table 4
Uncertainty distribution considered in the bridge models [25].

Parameter Distribution

Type μ σ

Concrete compressive strength (MPa) Normal 29.03 3.59
Reinforcing steel yield strength (MPa) Lognormal 465.0 37.30

Span length (mm)
Two-span Lognormal 31775 8738

Deck width (mm)
Single column bent Lognormal 9780 1980
Multi-column bent Lognormal 11970 2418

Abutment backwall height (mm)
Diaphragm abutments Lognormal 3234 488
Seat-type abutments Lognormal 2186 441

Abutments on piles – lateral capacity/deck width (N/mm)
Diaphragm abutment Lognormal 1120 404
Seat-type abutment Lognormal 1498 540

Elastomeric bearing pad
Stiffness per deck width (N/mm/m) Lognormal 908 327
Coefficient of friction for bearing pad Normal 0.30 0.10

Gap (mm)
Longitudinal (btw. deck & abutment wall) Lognormal 23.5 12.5
Transverse (btw. deck and shear key) Lognormal 12.8 2.58
Mass factor Uniform 1.25 0.007
Damping Normal 0.045 0.0125
Acceleration for shear key capacity (g) Lognormal 1.00 0.20

Piles translational stiffness (N/mm)
1% long. rebar Normal 297716 140101
3% long. rebar Normal 245178 105076

Piles rotational stiffness (N-m/rad)
1% long. rebar Normal 4.5×109 1.1× 109

3% long. rebar Normal 6.8×109 1.1× 109
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ground motion intensity; however, as an example, 0.5g is selected in the
following. Comparing cases 1 to 4, at a spectral acceleration of 0.5g,
probabilities of moderate damage to the bridge column with circular,

rectangular, oblong, and flared shapes are 81.8%, 73.3%, 57.8%, and
84.9%, respectively. For the same bridge type and at the same level of
ground motion intensity, there is a 65.6%, 57.9%, 41.5%, and 69.3%

(a1)

(b1)

(c1)

(d1)

(e1)

(f1)

(a2)

(b2)

(c2)

(d2)

(e2)

(f2)

(a3)

(b3)

(d3)

(e3)

(f3)

(c3)

(a4)

(b4)

(f4)

(c4)

(e4)

(d4)

Fig. 12. Probabilistic seismic demand models for column displacement ductility of bridges: (a) DBSC, (b) SBSC, (c) DBMC, (d) SBMC, (e) DASC, (f) SASC, 1-circular, 1-rectangular,
1-oblong, 1-flared shape (Note: refer to Table 3 for the list of nomenclatures).
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possibility of observing extensive damage in bridge columns with cir-
cular, rectangular, oblong, and flared shapes, respectively. Since the
circular column shapes are used in the majority of bridges (approxi-
mately 53% of California’s box-girder bridges), the performance of the
rectangular, oblong, and flared columns are compared to the perfor-
mance of the circular column. This comparison is provided as the ab-
solute relative error ε in Table 6 and Fig. 16. The results show that, at
slight, moderate, extensive, and collapse damage levels, the maximum
variations (relative errors) which are 25.02%, 30.78%, 38.42%, and
62.38% occur for the oblong cases.

Fig. 17 demonstrates the bridge system and components fragility
curves. It was shown that, in all cases, the most vulnerable components
significantly affect the seismic fragility of the bridge system. In this
study, it is observed that for the considered bridge types and column
shapes, columns dominate the fragility of the whole bridge (as also
noted by recent studies [25,32]), and hence similar trends are observed
in analyzing the system fragility curves as those of the column curves.
However, the bridge system is more fragile than any of its components.
The median and dispersion of the fragility functions for the four damage
states are presented in Table 7. The first column of the table shows the
bridge classes that are consistent with the ones assigned to the bridges
in Tables 3 and 6.

According to the generated fragility curves for bridges with integral
abutment type, bridge system fragilities can be sorted based on their
column shapes as oblong, rectangular, circular, and flared, with oblong
columns showing the lowest fragility. Similarly, the ranking for bridges
with seat-type abutments lists as oblong, circular, rectangular, and
flared columns. However, in both types of abutments, the difference
between the system fragilities of bridges with oblong columns is more
noticeable than the other considered shapes. This difference is

enhanced at higher levels of damage. A closer look at the bridge com-
ponent and system fragility curves shows that the abutment seat has a
lower fragility probability for bridges with oblong columns than for any
of the other considered column shapes. A similar behavior is observed
for the displacement of the elastomeric bearing.

5. Conclusions

Fragility analysis is a powerful tool for the reliability and risk as-
sessment of structures, and is extensively applied by researchers to
predict the extent of probable seismic damage to bridges with standard
configurations. The seismic fragility analysis of many types of highway
bridges in the United States has been explored. However, most of the
previous studies have focused on bridges constructed with circular or
rectangular columns, and hence the effect of column shape on the
fragility assessment of a bridge system is not yet well-known.

The effect of common bridge column shapes on the seismic perfor-
mance of bridges was analytically assessed in this study through the
pushover analysis of individual columns and fragility analysis of a hy-
pothetical bridge. The structural characteristics of the existing box-
girder bridges located in California were utilized to generate finite
element models. Three-dimensional numerical models of a typical
bridge column with various common shapes including circular, rec-
tangular, and oblong cross-sections as well as prismatic and flared
columns were created in OpenSees. The numerical models were vali-
dated with the previous experiments and account for the uncertainties
in modeling the bridge components. Then, the seismic assessments of
typical bridge columns were conducted through a set of monotonic and
cyclic pushover analysis. Next, a three-dimensional numerical model of
a typical box-girder bridge was made with the considered variety of

(g1)

(h1)

(g2)

(h2)

(g3)

(h3)

(g4)

(h4)

Fig. 13. Probabilistic seismic demand models for column displacement ductility of bridges: (g) DAMC, (h) SAMC, 1-circular, 1-rectangular, 1-oblong, 1-flared shape (Note: refer
to Table 3 for the list of nomenclatures).

Table 5
HAZUS definition of the four bridge damage states.

Damage states Definition of damage states

Slight Minor cracking or spalling on any of these bridge components: column, abutment, shear key, hinge, and deck. However, the damage usually requires only
cosmetic repair.

Moderate Column experiencing moderate cracking (particularly shear cracking) and spalling, observing moderate movement of the abutment (< 50mm), extensive
cracking and spalling of shear keys, any connection having cracked shear keys or bent bolts, keeper bar failure without unseating, rocker bearing failure or
moderate settlement of the approach.

Extensive Column degrading without collapse, shear failure, significant residual movement at connections, major settlement approach, vertical offset of the abutment,
differential settlement at connections, shear key failure at abutments.

Complete Column collapsing and connection losing all bearing support, which may lead to imminent deck collapse, tilting of substructure due to foundation failure.
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Fig. 14. Fragility curves of the columns for bridges: (a) DBSC, (b) SBSC, (c) DBMC, (d) SBMC, (e) DASC, (f) SASC, 1-circular, 1-rectangular, 1-oblong, 1-flared shape (Note: refer
to Table 3 for the list of nomenclatures).
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column shapes. Using a selected set of ground motions, nonlinear time
history analysis was performed on the created models to derive struc-
tural responses. The seismic performance of the bridge models was
evaluated by comparing their probabilistic seismic demands, the bridge
column and the system fragility curves.

Assessment of the generated curves indicated the impact of column
shapes on the bridge fragilities. Important conclusions are summarized
as follows:

1. Among the considered column shapes, oblong and flared columns

(g1) (g2) (g3) (g4)

(h1) (h2) (h3) (h4)

Fig. 15. Fragility curves of the columns for bridges: (g) DAMC, (h) SAMC, 1-circular, 1-rectangular, 1-oblong, 1-flared shape (Note: refer to Table 3 for the list of nomen-
clatures).

Table 6
Damage probabilities of the bridge columns at 0.5 g.

Case* Figure Column shape Damage state

Slight Moderate Extensive Collapse

P ε (%) P ε (%) P ε (%) P ε (%)

DBSC Fig. 14a1 CP 0.845 – 0.818 – 0.656 – 0.257 –
DBSC Fig. 14a2 RP 0.774 8.46 0.733 10.46 0.579 11.82 0.227 11.49
DBSC Fig. 14a3 OP 0.644 23.89 0.578 29.32 0.415 36.69 0.114 55.59
DBSC Fig. 14a4 Fl 0.871 3.00 0.849 3.81 0.693 5.66 0.286 11.16
SBSC Fig. 14b1 CP 0.953 – 0.950 – 0.844 – 0.456 –
SBSC Fig. 14b2 RP 0.980 2.88 0.981 3.29 0.915 8.48 0.585 28.42
SBSC Fig. 14b3 OP 0.810 15.00 0.774 18.52 0.598 29.17 0.204 55.11
SBSC Fig. 14b4 Fl 0.960 0.77 0.960 1.01 0.860 1.96 0.473 3.78
DBMC Fig. 14c1 CP 0.910 – 0.897 – 0.788 – 0.445 –
DBMC Fig. 14c2 RP 0.827 9.12 0.797 11.18 0.655 16.80 0.297 33.26
DBMC Fig. 14c3 OP 0.748 17.85 0.703 21.72 0.538 31.71 0.189 57.58
DBMC Fig. 14c4 Fl 0.927 1.83 0.918 2.26 0.816 3.61 0.479 7.67
SBMC Fig. 14d1 CP 0.981 – 0.982 – 0.927 – 0.641 –
SBMC Fig. 14d2 RP 0.988 0.66 0.989 0.65 0.951 2.62 0.730 13.84
SBMC Fig. 14d3 OP 0.895 8.80 0.879 10.51 0.743 19.79 0.356 44.44
SBMC Fig. 14d4 Fl 0.989 0.74 0.990 0.76 0.952 2.68 0.722 12.58
DASC Fig. 14e1 CP 0.843 – 0.814 – 0.648 – 0.249 –
DASC Fig. 14e2 RP 0.755 10.38 0.710 12.77 0.551 14.92 0.203 18.49
DASC Fig. 14e3 OP 0.632 25.02 0.564 30.78 0.399 38.42 0.103 58.44
DASC Fig. 14e4 Fl 0.870 3.24 0.850 4.36 0.693 6.92 0.288 15.89
SASC Fig. 14f1 CP 0.945 – 0.942 – 0.825 – 0.415 –
SASC Fig. 14f2 RP 0.977 3.37 0.978 3.81 0.904 9.60 0.553 33.28
SASC Fig. 14f3 OP 0.814 13.88 0.778 17.43 0.593 28.13 0.190 54.18
SASC Fig. 14f4 Fl 0.961 1.74 0.961 1.97 0.860 4.34 0.470 13.33
DAMC Fig. 15g1 CP 0.876 – 0.857 – 0.749 – 0.433 –
DAMC Fig. 15g2 RP 0.806 7.97 0.773 9.83 0.624 16.77 0.264 38.98
DAMC Fig. 15g3 OP 0.724 17.36 0.672 21.61 0.504 32.77 0.163 62.38
DAMC Fig. 15g4 Fl 0.899 2.63 0.883 3.07 0.783 4.49 0.472 9.17
SAMC Fig. 15h1 CP 0.979 – 0.980 – 0.918 – 0.614 –
SAMC Fig. 15h2 RP 0.954 2.56 0.949 3.13 0.892 2.90 0.673 9.62
SAMC Fig. 15h3 OP 0.883 9.86 0.865 11.71 0.718 21.77 0.318 48.22
SAMC Fig. 15h4 Fl 0.986 0.72 0.987 0.79 0.942 2.60 0.684 11.36

* Refer to Table 3 for the list of nomenclatures.
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indicated the lowest and highest vulnerability, respectively. This
was more noticeable at higher levels of damage such as the ex-
tensive damage state.

2. Although bridges with seat abutments represented higher prob-
ability in the fragility analysis of the bridge column and system,
similar trends were observed for the impact of column shapes on
bridges with rigid and seat abutment types.

3. Additionally, it was observed that the findings were independent of
the number of bridge columns per bent.

4. The cyclic tests comparisons showed that the strength degradation
happened at earlier levels in the flared columns, while it only

occurred at the latest cycles for the prismatic columns.
5. Among the developed PSDMs, those of the oblong cross-sections had

noticeably different slopes.
6. No specific pattern was observed on developed PSDMs comparing

circular and rectangular column shapes.
7. In particular, the fragility curves of bridge columns indicated a

higher probability of damage for bridges consisting of flared col-
umns in comparison to those made of straight columns.

8. The performance comparison of the rectangular, oblong, and flared
columns to the circular columns showed that the maximum varia-
tions occurred for the oblong cases at all damage levels.
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Fig. 17. Fragility curves at moderate damage state for the bridge system and components for bridges designed after 1970 with multi-columns per bent and (a) seat, (b) integral type
abutment.
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