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Abstract
Probabilistic seismic demandmodels (PSDMs) of bridge components such as col-
umn and abutment are commonly developed through classical linear regression
techniques in which a univariate model format is predefined in the logarith-
mically transformed space. The more advanced machine learning (ML)-based
PSDMs incorporate various sources of uncertainties, which eventually leads to
a more credible prediction of the seismic demands of bridge components and
enhances the vulnerability assessment of the overall bridge systems. Despite the
emerging advancements in ML approaches, many of them have not yet been
introduced to estimate bridge seismic responses. To this end, the present study
seeks to develop predictive PSDMs using a reputable ML approach, the artificial
neural network (ANN). Relative to the classical univariate PSDMs, the ANN-
based PSDMs improve the median estimation of demands, particularly over the
large and small range of ground motion intensities and reduce the total predic-
tion variability. Moreover, the proposed ANN-based approach provides a gener-
alizable model with an unbiased prediction of the seismic demands. The ANN-
based PSDMs can be further used in estimating the probability of structural dam-
age in the fragility and risk assessment process.

KEYWORDS
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1 INTRODUCTION

Proper prediction of the component demands of bridges subjected to earthquake excitations is essential for reliable
performance-based assessment of highway bridges and eventual hazard decision-makings. This seismic hazard prediction
is typically assessed by deriving analytical probabilistic seismic demand models (PSDMs) for bridge components includ-
ing column, deck, foundation, and abutment. The PSDMs are commonly utilized to generate analytical fragility curves of
a bridge system, and these curves are further used in the earthquake resilience assessment of a transportation network.
The most well-known and widely used PSDM is a single parameter regression model1 that estimates demand as a func-
tion of ground motion intensity measure (IM) (e.g., peak ground acceleration (PGA)). Most of the previously developed
bridge PSDMs have used the classical format, although more recently generated models investigated alternative formats.
Although the classical model is simple to implement, it can be improved in several aspects to enhance the reliability and
prediction power of themodel. As indicated by previous studies (Seo&Linzell, 2013; Ghosh et al., 2013; Soleimani et al.,2–4;
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Xie et al., 20195) based on data-driven approaches, this classic model can be improved by including more input variables
(e.g., span length, column height, concrete strength) that represent additional sources of uncertainties6 in the regression
model and investigating alternative regression equations (e.g., 2nd order polynomial). A few researchers (e.g., Soleimani
et al., 20174; Xie & DesRoches, 20197) incorporated feature selection techniques (e.g., LASSO and stepwise regression)
to identify the most influential uncertain parameters in estimating the bridge component demands. These studies yet
expressed the demands as a linear function of the random variables after transferring them to a logarithmic scale. The
findings from these studies and several other sensitivity studies revealed the importance of the inclusion of structural
geometries uncertainty along with the ground motion parameters in estimating the probabilistic seismic demands8 and
fragility curves9 of highway bridges. Neglecting these significant sources of uncertainties could lead to over- or underes-
timation of the seismic demands of bridge components.
Some other researchers considered response surface models, mostly the 2nd-order polynomial regression model, as an

alternative functional form for the PSDMs. In this regard, Pan et al.10 found the 2nd-order regressionmodel more efficient
than the multivariate linear regression model for fitting the response data of a multi-span I-girder steel highway bridge,
particularly for groundmotions stronger than 0.6 g (PGA). Their studywas limited to specific input regression parameters.
More specifically, they used ground motion moment magnitude and distance as the input variables of the multivariate
model, while they used a single parameter PGA in their quadratic model. Furthermore, Seo and Park11 developed fragility
curves for a portfolio of regional curved steel I-girder bridges in the Eastern United States. They used PGA as the ground
motion intensity and expressed the bridge component demands such as the curvature ductility of the bridge columns
using a 2nd-order polynomial model.
Although a growing body of researchhas been evolved over the recent years to propose alternative approaches to develop

PSDMs, none has been proved to be dominantly superior over other approaches. There yet remains challenges to be
addressed by future research to enrich predictions provided by PSDMs and expanding their application beyond certain
methodology. Furthermore, each study is limited to a specific bridge type, a selective number of random variables as the
predictors, fixed functional forms, and assumptions.
The classical regression techniques used to develop PSDMs suffer from several drawbacks such as the fixed func-

tional forms, low prediction power to capture nonlinearity, and prior assumption on the lognormality distribution of
the demands. More specifically, this method necessitates a predefined functional form for the regression model. These
presumed equational forms may incorporate a simple format such as a linear model with single parameter, multivariable
linear model, or a more complex format such as the polynomial regression. For example, in the classical unidimensional
form, the seismic demand is conditioned on a single parameter as the seismic IM. However, a more general trend and
complex interaction between the input and output variables may not be accurately captured by the classical regression
technique due to the high-dimensional nonlinear nature of the PSDMs. In addition, the lack of flexibility to incorporate
various sources of uncertainties into the formulation of PSDM influences the reliability of the estimation of the demands.
For example, the uncertainties associated with structural modeling parameters are not incorporated in the formulation of
the unidimensional PSDM. Hence, evaluating the impact of the variations of these parameters on the demands requires
substantial computational cost for reanalyzing the bridge with the new set of parameter combinations. Therefore, includ-
ing a variety of uncertain configurational features in the list of input variables of the PSDM is crucial for a more realistic
estimation of the demands. Besides, an assumption of a particular distribution for the demands (e.g., the lognormal-
ity assumption in the single parameter regression model) poses subjective bias on the predictions. The distribution of
demands is often unknown, while the predefined distribution may not be compatible for all engineering demand param-
eters (EDPs) and different classes of bridges as shown by a couple of recent studies.12,13 As a result, a more generalized
approach in which the algorithm is not restricted to a fixed functional form and a particular assumption on the distribu-
tion of the parameters would bemore desirable for practical application. To tackle these challenges, a powerful alternative
to the classic regression techniques is implementing modern machine learning (ML) approaches.
Given the growing advances in computational technologies, ML approaches provide a tremendous potential (e.g., han-

dling large-scale data, dealing with complex problems and data scarcity, proposing computationally efficient solutions)
to enhance predictive seismic analysis.14 However, despite the existing variety of ML algorithms and their applications in
different disciplines, the implementation of ML in improving the probabilistic seismic analysis of bridges is in its early
stages. In particular, further research is required to leverage the benefits that modern ML methods could offer for the
prediction of bridge demands. Among these methods, artificial neural network (ANN) has received increasing interest
over the years thanks to its robustness and flexibility14,15; however, its application in the context of PSDMs is rather
very limited. ANN can outperform other ML methods owing to its capability to capture the high-dimensional nonlin-
ear relationship between the predictors and the EDPs. Because of the hidden layers and various activation functions,
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ANN can be especially helpful to model the nonlinearities within the dataset compared to a regression model. In addi-
tion, ANN can also model more complicated relationships between the input and output data without engineered prior
knowledge.
During the past decades, ANN has been applied to fragility assessment for steel moment-resisting frames,16 3D rein-

forced concrete buildings,17 masonry building,18 electrical cabinets of nuclear power plants,19 masonry veneers,20 and
nonlinear hysteretic systems.21 Within the seismic assessment of bridges, Pang et al.22 showed that implementing ANN
helps to reduce intensive computations that are involved in generating fragility curves of highway bridges. They tested
the efficiency of the ANN approach on a three-span continuous bridge, which is a common bridge type in China and
chose PGA as the ground motion IM. Likewise, Mangalathu et al.9 proposed ANN to eliminate unnecessary grouping of
bridge classes based on their fragilities. By studying skewed concrete bridges with seat abutments, they found that prior
grouping of bridges is not required using the ANN-based model, and better fits with a higher coefficient of determination
and lower mean square error can be obtained compared to the classical fragility analysis approach. These studies used
one hidden layer and a certain pre-assumed number of nodes in the layer. Researchers reported that the ANN model
specifications such as the number of hidden layers and the number of nodes will influence the efficiency of the ANN
algorithm.23 Although it is expected that the estimated seismic demand values of bridge components significantly depend
on these characteristics, implemented algorithms, and associated uncertain parameters, their impact is still unclear on the
overall probabilistic seismic analysis, since previous studies that applied ANN only used one hidden layer and assumed a
particular number of nodes for their analysis without performing a sensitivity analysis.
The review of the literature indicates that the classical regression-based PSDMs need to be improved to better esti-

mate the seismic vulnerability of bridges. Since the ANN has rarely been applied for the seismic performance assess-
ment of highway bridges, this study aims to improve the knowledge regarding the application of the ANN algorithm to
estimate the seismic demands of bridge components. In summary, this study aims to address three main challenges in
building PSDMs in a single framework: (I) whether stochastic gradient descent ANN is a suitable approach for devel-
oping PSDMs? (II) What type of ANN architecture (in terms of the number of neurons and solvers methodologies)
is more suitable for predicting the seismic demands of bridge components? Do additional hidden layers significantly
impact the results? (III) How much are the predictions improved using the ANN-based model compared to the clas-
sic PSDMs? (IV) Does this approach provide comparable results to the multiparameter linear and 2nd-order regression
models?
Although previous efforts provide valuable insight into the general effectiveness of ANN application in the seismic

assessment of bridges, there is a lack of systematic appraisal of different tools that can be used to optimize the efficacy
of the ANN model to ensure the efficient and generalizable performance of the ANN in developing bridge PSDMs. To
address these shortcomings, this study designs an ANN framework for bridge-specific PSDMs and seeks to identify the
effect of the ANNmodel characteristics such as network hyperparameters and optimization solvers on PSDM accuracy to
determine the most suitable specifications. The model utilized in the ANN predictions is compared with the results from
the common regression-based PSDMs including the unidimensional, multiparameter, and polynomial regressionmodels.
The proposed ANN approach is shown to be capable of producing simplified mathematical expressions while taking into
consideration a comprehensive list of inherent uncertainties and data complexity.

2 BRIDGE SEISMIC DEMAND DATABASE

This study investigates the seismic demands of key bridge components including column, deck, foundation, and
abutment.24 To this end, representative bridgemodels for the class of multi-span box-girder concrete bridges (Figure 1) are
created inOpensees25 anddynamic time-history analyses are conducted on the bridge finite elementmodels. These bridges
are under the category of tall pier bridges with three different ranges of column height ratios including low, medium, and
high.26 For a detailed description of the bridgemodel, interested authors are encouraged to check the work by Soleimani27
since the samemodeling strategies and characteristics for the considered bridges are followed in this study. Bridge samples
are created using the distribution of parameters (Table A.1 – Appendix A) using the Latin Hypercube sampling technique.
A wide-ranging set of 160 ground motions with two scaling factors of 1 and 2 (resulting in a total of 320 excitations) is
selected from Baker’s ground motion database.28 Performing seismic analysis by applying 320 ground motions on the
three classes of tall bridges leads to a total nonlinear time history analysis of 960 combinations of bridge samples and
ground motions. For each excitation, the maximum demands of the bridge components are recorded at the end of shak-
ing, resulting in a total of 5760 seismic demand databases.
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F IGURE 1 Schematic layout of the bridge models

3 DEVELOPMENT OF ANNMODEL

3.1 ANN framework

This study appliesANNalgorithms29–31 andutilizesmodern deep learning tools to train themodels. This study implements
the gradient descent algorithm and conducts backpropagation.32–35 As displayed in a schematic diagram in Figure 2, the
neural network consists of at least three layers: an input layer, an output layer, and single or multiple hidden layers. The
input layer is built upon the input variables that are used in the prediction models. For this study, the input variables
include ground motion properties, structural and modeling parameters listed in Table 1. The first eight variables that are
the categorical types are binary coded, and the remaining numerical variables are used in the models after transferring
them to the natural logarithmic space. The output layer represents the seismic demand predictions, as provided in Table 2,
in the natural logarithmic scale.
The interaction between the layers is demonstrated in Figures 3 and 4. The hidden layer is comprised of neurons that

link the input to the output dataset. In the process of transferring from the input layer to the ith neuron in the hidden
layer, the input variables are multiplied by weights and added by a bias factor. Then, a nonlinear activation function is
applied to the results to generate the output values of the ith neuron in the hidden layer. To link the data from the hidden
layer to the output layer, another set of weights, bias, and activation functions are applied to the hidden layer data. Using
a back-propagation algorithm,36 weights and biases are optimized.
In the gradient descent algorithm, the vector of weights and biases (i.e., 𝝀𝑡) is updated through an optimization process.

At each iteration, this algorithm takes steps in the negative direction of the gradient of the loss (i.e.,∇𝑾, 𝑩𝐿(𝝀𝑡−1)where L
represents the loss function with respect to the weight (𝑾) and bias (𝑩). The network parameters at the iteration number
𝑡 with the learning rate of 𝛼 are computed as in Equation (1). At each optimization iteration, a unique subset of training
data is used.

𝝀𝑡 = 𝝀𝑡−1 − 𝛼∇𝑾,𝑩𝐿 (𝝀𝑡−1) (1)
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F IGURE 2 General artificial neural network (ANN) framework

F IGURE 3 Transaction from input layer variables to the ith neuron in the hidden layer
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TABLE 1 List of input variables considered for the artificial neural network (ANN) approach

Input
variables Seismic analysis characteristic

Input
variables Seismic analysis characteristic

𝑥1 Soil type 𝑥18 Foundation rotational stiffness (translational direction)
𝑥2 Girder type 𝑥19 Foundation rotational stiffness (longitudinal direction)
𝑥3 Column cross-section shape 𝑥20 Foundation translational stiffness
𝑥4 Abutment type 𝑥21 Concrete strength
𝑥5 Footing type 𝑥22 Reinforcement strength
𝑥6 Fixity type 𝑥23 Mass
𝑥7 Direction of excitations 𝑥24 Damping
𝑥8 Number of spans 𝑥25 Span ratio
𝑥9 Span length 𝑥26 Column height ratio
𝑥10 Column height 𝑥27 Ground motion dt
𝑥11 Deck width 𝑥28 PGA
𝑥12 Number of cells in the box-girder 𝑥29 Sa (1.0 s)
𝑥13 Girder space 𝑥30 Sa (0.2 s)
𝑥14 Top flange thickness 𝑥31 Sa (0.3 s)
𝑥15 Superstructure Depth 𝑥32 Mw
𝑥16 Reinforcement ratio 𝑥33 R
𝑥17 Abutment height 𝑥34 Vs30

TABLE 2 Seismic demand parameters to predict

Predicted variable Seismic demand
𝑦1 Column curvature ductility
𝑦2 Deck displacement
𝑦3 Foundation translational displacement
𝑦4 Foundation rotation
𝑦5 Active abutment displacement
𝑦6 Passive abutment displacement

3.2 Tuning of hyperparameters

The network architecture is defined according to the number of hidden layers along with the number of neurons in these
layers. The network architecture and the implemented solver (e.g., Adam optimizer) to optimize the gradient descent
network could significantly control the predictive power of the ANN-based PSDM,23,37 Therefore, a sensitivity study is
conducted to identify the influence of the network architecture and the type of algorithm on the model performance.
Based on evaluating the prediction accuracy and the mean squared errors (MSEs), the most-viable set of hyperparameters
for the final model is determined.
A set of options was tested for training the neural network using gradient descent. Three common solvers includ-

ing Adam optimizer,38 stochastic gradient descent with momentum (SGDM),39 and root mean squared propagation
(RMSProp) optimizer40 are evaluated for training networks. The SGDM adds an additional momentum term (𝜏(.)) to
Equation (1) to incorporate the contribution of the gradients from the last steps and dampen oscillation around local
optima to accelerate gradients in the relevant direction towards the optimum (see Equation (2)).

𝝀𝑡 = 𝝀𝑡−1 − 𝛼∇𝐿 (𝝀𝑡−1) + 𝜏 (𝝀𝑡−1 − 𝝀𝑡−2) (2)

Unlike SGDM that uses a fixed learning rate, RMSProp changes the learning rate over time with an exponentially
decaying average that engages the squared gradients from the recent time steps (Equations (3)–(5)). The parameter 𝛾
controls the decay rates of the moving averages. The last changes to the network parameters in 𝝀 are represented by 𝒗𝑡−1.
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F IGURE 4 Transaction from the hidden layer to the
output layer

𝝀𝑡 = 𝝀𝑡−1 −
𝛼∇𝐿 (𝝀𝑡−1)√
𝒗𝑡−1 + 𝜖

(3)

𝒗𝑡−1 =
𝒗𝑡−1

1 − 𝛾𝑡−1
1

(4)

𝒗𝑡−1 = (1 − 𝛾1) (∇𝐿 (𝝀𝑡−1))
2 + 𝛾1𝒗𝑡−2 (5)

Similarly, Adam adapts the learning rates based on the average of both the gradient magnitudes and the squared gradi-
ents from the recent time steps (Equations (6)–(8)).

𝝀𝑡 = 𝝀𝑡−1 −
𝛼.�̂�𝑡−1√
𝒗𝑡−1 + 𝜖

(6)

�̂�𝑡−1 =
𝒎𝑡−1

1 − 𝛾𝑡−1
2

(7)

𝒎𝑡−1 = (1 − 𝛾2)∇𝐿 (𝝀𝑡−1) + 𝛾2𝒎𝑡−2 (8)

3.3 Selection of training and testing data

Similar to otherML algorithms, themodel performance is examined using a test data set that has not been used in training
the model. To properly evaluate the performance of the model, the data are split into two sets of training (80%) and testing
(20%). As shown in Figure 5, prediction accuracy improves as the training size of the data set increases up to a specific
point. More particularly, increasing the training size from 70% to 95% of the entire data increases the accuracy of training
prediction from 85.87% to 87.02%. Usingmore data points as the training set increases the prediction accuracy of themodel
up to a specific point after which the performance remains almost constant for the training set and decreases for the testing
set. Therefore, the 80% allocation to the training set is found appropriate in order to make a balance between the training
and testing accuracy.
During the training–validation process, themost suitable network architecture is identified by tuning parameters of the

neural network and performing sensitivity analyses. The hyperparameters are set while training the models, using a grid-
search method, by minimizing MSEs. More specifically, a grid of hyperparameters is used for each model, and the model
is trained on the training set and validated using the validation set. In this process, the models are evaluated through a
10-fold cross-validation technique,41 which is a common practice in ML to avoid overfitting. As schematically shown in
Figure 6, this technique randomly partitions data into similar sized 10 subsets with an equal number of data points in
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F IGURE 5 Variations of different training
sizes in predicting 𝑦1 (column curvature
ductility) using stochastic gradient descent
with momentum (SGDM)

F IGURE 6 Process to train, validate, and test the artificial neural network (ANN)-based probabilistic seismic demand models (PSDMs)

each subset. Through an iterative process, the model is trained using nine subsets and is validated on the remaining 10th
subset. This training–validation process is iterated 10 times. The prediction accuracy and the error term are computed
in each iteration, and the average values across all folds are reported as the final values. The performance of the final
generated model is evaluated and compared to the classical PSDM using the test set. Once the model is trained and tuned,
the remaining 20% of the data (known as the testing set) is used to evaluate the performance of the final tuned models
based on prediction accuracy and MSE.

4 IMPLEMENTATION OF ANN

4.1 Neural network architecture for bridge seismic demands

Using the aforementioned solvers in MATLAB, different types of neural networks are created for each seismic demand
(𝑦𝑖). Regarding the execution environment, this study uses GPU-based accelerated processing. In terms of the training
options, the following features and hyperparameters are found the most suitable for the predictive models: 150 maximum
number of epochs;mini-batch size 50; gradient decay factor 0.9; squared gradient decay factor, 0.9; L2 regularization 0.001;
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F IGURE 7 Comparison of the model performance based on prediction accuracy to predict 𝑦1 (column curvature ductility) using: (A)
stochastic gradient descent with momentum (SGDM), (B) root mean squared propagation (RMSProp), and (C) Adam

F IGURE 8 The most-viable predictive models for (A) 𝑦2 (deck displacement) and (B) 𝑦3 (foundation translational displacement) using
the root mean squared propagation (RMSProp) solver

momentum 0.9; epsilon, 1e − 8. The initial learning rate that is used for the SGDM, RMSProp, and Adam is 0.01, 0.001,
and 0.001, respectively.
For each network type, networks are constructed using a range of neurons varying from a single neuron to 100 neurons.

In order to identify the most-viable number of neurons in the hidden layer, the prediction accuracy and MSE of the ANN
models are evaluated for the training and testing datasets. Figures 7–10 display the performance variation of the ANN
models, in terms of prediction accuracy and MSE along with their associated confidence intervals (CI), based on incor-
porating a different number of neurons. The most-viable numbers of neurons of different models are the numbers that
resulted in the highest prediction accuracy or lowest MSE error (considering the overfitting issue and a proper balance
between the training and testing prediction accuracy), indicated by vertical arrow lines in Figures 7–10 and summarized
in Table 3. Compared to using a fixed set of 10 neurons in the hidden layer (as was the case with the previous studies),
Figure 11 indicates that prediction accuracy improves when themost-viable neurons are identified and used in developing
the ANN-based predictive models.
It is also observed that themodel performance improves to a specific point afterwhich increasing the number of neurons

does not significantly influence the prediction, but with an expense of increasing model complexity, computational cost,
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F IGURE 9 Comparison of the model performance based on mean squared error (MSE) to predict 𝑦4 (foundation rotation) using: (A)
stochastic gradient descent with momentum (SGDM), (B) root mean squared propagation (RMSProp), and (C) Adam

F IGURE 10 The most-viable predictive models for (A) 𝑦5 (active abutment displacement) and (B) 𝑦6 (passive abutment displacement)
using the root mean squared propagation (RMSProp) solver

TABLE 3 Summary of the prediction accuracy values for the most-viable neural network architecture

Prediction accuracy (%)
Most-viable number of
neurons Training Testing

Solver SGDM RMSProp Adam SGDM RMSProp Adam SGDM RMSProp Adam
Seismic demand 𝑦1 31 66 66 86.71 85.12 81.07 82.69 81.09 78.13

𝑦2 30 48 42 71.34 73.11 72.52 70.30 72.09 71.55
𝑦3 27 53 42 86.90 88.49 86.54 85.18 86.52 84.88
𝑦4 15 54 54 95.72 95.86 94.98 94.74 94.86 94.49
𝑦5 27 62 67 73.81 80.70 77.07 66.95 75.43 73.46
𝑦6 25 64 67 74.68 81.22 77.55 72.32 75.90 71.53

Abbreviations: RMSProp, root mean squared propagation; SGDM, stochastic gradient descent with momentum.
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F IGURE 11 Comparison of the performance of models with 10 neurons and the most-viable number of neurons found in this study
(Table 3)

F IGURE 1 2 Illustration of classical

and the possibility of overfitting. As an example, to predict the column curvature ductility using the ANN model that
is developed based on SGDM, the accuracy increases from ∼74% by adopting a single neuron to ∼86% using 30 neurons
(Figure 7(A)). As indicated by an arrow in the plot, 31 is identified as themost-viable number of neurons in the hidden layer
for the predictive ANN model that was developed using SGDM. For the investigated seismic demands, Table 3 presents a
summary of the results for the prediction accuracies corresponding to the most-viable number of neurons for each solver.
Bolded numbers indicate the highest accuracy for each output variable during training and testing. Furthermore, initial
analyses indicated that using two and three hidden layers does not noticeably change the results, and thus a single hidden
layer was adopted for the remaining analyses.

4.2 Final proposed models

Based on the presented results, in the previous section, from the sensitivity study, the hyperparameters selected for the
ANN models are: the SGDM solver and 31 neurons for estimating the column curvature ductility (𝑦1), and the RMSProp
solver and 48 neurons for estimating the deck displacement (𝑦2). For the other demands corresponding to the foundation
and abutment, RMSProp is found as the best solver and the most-viable number of neurons are 53, 54, 62, and 64 for 𝑦3 to
𝑦6, respectively.
Moreover, the normalization of the input variables improved the overall performance of the models, so the Z-score

normalization was adapted to the models. In terms of the activation functions,42 sigmoid (Equation (9)), which is consid-
ered for developing the final models, performed slightly better than the rectified linear unit (ReLU) for the studied neural
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F IGURE 13 Comparison of the prediction accuracy of the artificial neural network (ANN)-based models with the classical probabilistic
seismic demand models (PSDMs) for: (A) 𝑦1 (column curvature ductility), (B) 𝑦2 (deck displacement), (C) 𝑦3 (foundation translational
displacement), (D) 𝑦4 (foundation rotation), (E) 𝑦5 (active abutment displacement), (F) 𝑦6 (passive abutment displacement)

network architecture.

𝑓
(
𝑦ℎ𝑖

)
= 1∕

(
1 + exp

(
−𝑦ℎ𝑖

))
(9)

The hidden layer is comprised of neurons that link the input to the output dataset. The ANN-based predictive model is
formulated according to the transaction from the variables in the input layer to the neurons in the hidden layer (Figure 3)
and the transformation of the outputs of the hidden layer to the output layer (Figure 4). The final model is expressed
as in Equation (10), while the corresponding values of weights and biases, developed through training, are reported in
Appendix – B (Table B.1) for selective responses.

𝑦𝑗 = (𝑏𝑜)𝑗 +

𝑛∑
𝑖=1

(𝑣𝑖)𝑗[1∕1 + exp(−[(𝑤1,𝑖)𝑗𝑥1 + (𝑤2,𝑖)𝑗𝑥2 +⋯+ (𝑤34,𝑖)𝑗𝑥34 + (𝑏𝑖)𝑗])] (10)
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F IGURE 14 Comparison of the cross-validation errors of the artificial neural network (ANN)-based models with the classical
probabilistic seismic demand models (PSDMs) for: (A) 𝑦1 (column curvature ductility), (B) 𝑦2 (deck displacement), (C) 𝑦3 (foundation
translational displacement), (D) 𝑦4 (foundation rotation), (E) 𝑦5 (active abutment displacement), (F) 𝑦6 (passive abutment displacement)

5 COMPARISON OF ANNMODEL AND CLASSICAL REGRESSIONMODEL

The median estimate of the structural demand (𝑆𝐷) based on the classical approach was formed by a power-law model as

𝝁𝑆𝐷 = 𝑎(𝑰𝑴)
𝑏 (11)

where 𝑎 and 𝑏 are the regression coefficients.1,43 IM represents the intensity measure of the ground motions. PGA and
spectral acceleration at 1.0 s (Sa(1.0s)) are typically used as the IMs for bridge applications.12,44–46 The classical PSDM
introduced in Equation (11) is equivalent to a linear regression fit model (Figure 12) in the natural logarithmic coordinate
space, and therefore can be represented as Equations (12) and (13).

ln(𝝁𝐷𝑀) = ln(𝑎) + 𝑏 ln(𝑰𝑴) (12)
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F IGURE 15 Comparison of seismic demands predicted by regression models and computed by finite element analysis for: (A) 𝑦1
predicted by artificial neural network (ANN)-based model, (B) 𝑦1 predicted by classical model, (C) 𝑦4 predicted by ANN-based model, and (D)
𝑦4 predicted by classical model

𝛽𝐷𝑀 =

√∑𝑚

𝑖=1

[
ln

(
𝑆𝐷𝑖

)
− (ln (𝑎) + 𝑏𝑙𝑛 (𝐼𝑀𝑖))

]2
𝑚 − 2

(13)

In these formulations, 𝑆𝐷 represents the value of seismic demand obtained from the nonlinear dynamic analysis per-
formed in OpenSees, andm shows the total number of recorded responses.
For the performance assessment of the ANN approach, the predictions from the proposed ANN-based model are com-

pared with those from the classical model (M0) which is developed using the traditional regression techniques. As pre-
sented in Figures 13 and 14, the ANN-based models provide a better approximation of the demands by improving the
prediction accuracy and reducing cross-validation errors. The largest improvement (around 85% reduction in the cross-
validation error) is observed for predicting the displacement of the abutments (Figures 13(E) and 13(F)). Besides, moderate
improvements are noted for the other responses (65%–75% error reduction). The lowest increase in the prediction accuracy
is found for the foundation rotation where both approaches well approximated the median demand with ∼88% and ∼94%
accuracy computed using the classical model and the ANN model, respectively.
Figure 15 displays the correlation between the predictedmedian seismic demands and the targeted responses simulated

using the finite element dynamic analysis. In the case of the ANN-based models, shown in Figures 15(A) and 15(C), the
predictions and target responses are mostly centered around the 1:1 line resulting in high values of R (e.g., R∼0.97 for
𝑦1). As this plot compares the predictions from the ANN-based models (Figures 15(A) and 15(C)) and the classical mod-
els (Figures 15(B) and 15(D)), the largest differences appear over the medium range of small and large responses where
the ANN-based models can efficiently capture the nonlinearity in the data while the classical model with the linearity
assumption can not capture this complexity. The high R values (Figure 15) and low cross-validation errors (Figure 14)
indicate that the proposed ANN-based models are generalizable.
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F IGURE 16 Distribution of residuals for the predicted responses of (A) 𝑦1 from artificial neural network (ANN)-based model, (B) 𝑦1
from classical model, (C) 𝑦4 from ANN-based model, and (D) 𝑦4 from classical model

TABLE 4 The list of compared models including the classical and common algorithms

Models Algorithms Terms Formulation
M0 with PGA Classic regression model 1st order 𝑦𝑖 = 𝛼0𝑖 + 𝑏𝑖ln(𝑃𝐺𝐴)

M0 with Sa1.0 Classic regression model 1st order 𝑦𝑖 = 𝛼0𝑖 + 𝑏𝑖ln(𝑆𝑎1.0)

M1 Multiparameter regression model 1st order 𝑦𝑖 = 𝛼0𝑖 +
∑𝑚

𝑗=1
𝛼𝑗𝑖𝑥𝑗

M2 2nd-order polynomial 2nd order 𝑦𝑖 = 𝛼0𝑖 +
∑𝑚

𝑗=1
𝛼𝑗𝑖𝑥

2
𝑗

M2-S 2nd-order polynomial 2nd order 𝑦𝑖 = 𝛼0𝑖 +
∑𝑚

𝑗=1
𝛼𝑗𝑖𝑥

2
𝑗
(with stepwise regression)

M3 2nd-order polynomial 1st and 2nd order
and interactive

𝑦𝑖 = 𝛼0𝑖 +
∑𝑚

𝑗=1
𝛼𝑗𝑖𝑥𝑗 +

∑𝑚

𝑗=1
𝛼𝑗𝑗 𝑖𝑥

2
𝑗
+
∑𝑚

𝑗=1

∑𝑚

𝑙=2,𝑙>𝑗
𝛼𝑗𝑙 𝑖𝑥𝑗𝑥𝑙

M4 2nd-order polynomial 1st and 2nd order 𝑦𝑖 = 𝛼0𝑖 +
∑𝑚

𝑗=1
𝛼𝑗𝑖𝑥𝑗 +

∑𝑚

𝑗=1
𝛼𝑗𝑗 𝑖𝑥

2
𝑗

M4-S 2nd-order polynomial 1st and 2nd order 𝑦𝑖 = 𝛼0𝑖 +
∑𝑚

𝑗=1
𝛼𝑗𝑖𝑥𝑗 +

∑𝑚

𝑗=1
𝛼𝑗𝑗 𝑖𝑥

2
𝑗
(with stepwise regression)

Besides, residuals are compared in Figure 16 to check the variability in the demand predictions. In the case of ANN
model predictions (Figures 16(A) and 16(C)), as the fitted distributions (dashed red lines) indicate, the residuals are nor-
mally distributed with a mean close to zero. However, the residuals obtained from the predictions of the classical models
(Figures 16(B) and 16(D)) do not satisfy these criteria indicating a noticeable bias associated with this type of model. The
mean residuals of the classicalmodels are 0.82 and 0.78 for the examples shown in Figures 16(B) and 16(D), and the highest
frequency of residuals belongs to the [−0.6, −0.3] and [0.3, 0.6] bins, respectively. Overall, the results imply the unbiased
predictions of the ANN-based models compared to the classical models since the residuals of the ANN models are closer
to zero but there is a noticeable randomly distributed residual associated with the classical models.
Moreover, the performance of the ANN-based model is compared with the other common alternative forms of PSDMs

such as the classical regression models (single parameter models with either PGA or Sa1.0), multiparameter linear regres-
sion model (using the input variables in Table 1), and the variations of 2nd-order polynomial regression models (see
Table 4). Figure 17 displays a comparison of the accuracy of predictions obtained from these models. In general, it is
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F IGURE 17 Comparison of the performance of the artificial neural network (ANN)-based model and the common regression-based
probabilistic seismic demand models (PSDMs)

noted that including multiple uncertain parameters, in the form of multiparameter and 2nd-order polynomial regression
model, leads to better estimation of the demands. The performance of the polynomial models depends on the seismic
demand of interest. In particular, the 2nd-order polynomial models, which include both 1st- and 2nd-order terms with or
without the interactive terms performed better than the other polynomial forms. Overall, it is observed that, in predicting
all seismic demands, the ANN-based model outperforms the other regression-based models (Figure 17).

6 CONCLUSIONS

The functional form of PSDMs becomes complex by adding uncertainty treatment as the number of input variables
increases. ML algorithms that are capable of capturing complex interactions between the random variables involved in
the bridge seismic analysis and the estimated seismic demands provide appealing alternatives to the classical demand
models. Despite the emerging advancements in ML approaches, many of them have not yet been introduced to estimate
bridge seismic responses.
This study implements a gradient descent ANN to develop predictive models for the probabilistic seismic demands

corresponding to the key bridge components. The established network incorporated 34 input variables to cover the associ-
ated uncertainties in the ground motion and structural modeling parameters to predict six seismic demands correspond-
ing to the column, deck, foundation, and abutment. Three different solvers including Adam, RMSProp, and SGDM were
explored, and sensitivity analysis was conducted to identify the most appropriate hyperparameters of the network’s archi-
tecture.
It is found that the proposed ANN algorithm efficiently modeled complex interaction and nonlinear characteristics

inherent in the probabilistic seismic demands, and no systematic bias was observed in the developed ANN-based models.
Moreover, compared with the classical regression-basedmodel, the ANN-basedmodel better captured the small and large
values of themedian seismic demands. The role of ANN in providing an alternative PSDM is imperative to provide amore
reliable estimation of the bridge vulnerability when subjected to an earthquake. Particularly, the ANN-based PSDMs can
be incorporated with the capacity limits to generate fragility curves for the bridge components.
Forthcoming studies, focusing on the vulnerability assessment of the bridge system, need to account for the correlation

between the component vulnerabilities to integrate the component fragilities in order to develop the system-level bridge
fragility curves. Although the findings from this study pave the path towards the application of ANN-based approaches to
have a more reliable prediction of the demands, the limitations of this study can be addressed in future works. The results
of this study may be limited to cohorts of bridges considered; however, future work will investigate the repeatability of the
findings on other bridge classes such as I-girder, T-girder, and Slab bridges. Besides, future studies may explore to what
extend the bridge system fragilities are sensitive to the different characteristics of the ANN-based PSDMs.
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