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Abstract 

 

Curved bridges are commonly constructed at interchange routes as connectors 
between two main roads in a highway network. Although past earthquakes, 
particularly the 1971 San Fernando earthquake, revealed the susceptibility of curved 
bridges to experience considerable damage during earthquakes, the seismic 
performance of this bridge class has not been investigated thoroughly. To address a 
part of this deficiency, the current study concentrates on the seismic performance 
analysis of curved concrete box-girder bridges with in-span hinges. In this bridge 
class, common potential damage patterns include damage to bearings and expansion 
joints, which are the most vulnerable components of the system. Hence, curved 
bridges including, in-span hinges, require particular investigations. As a case study, a 
highly curved bridge constructed before 1971 and located in California is selected for 
seismic analysis in this paper. The bridge seismic response is evaluated by 
performing nonlinear time history analysis in OpenSees on the representative bridge 
model with two configurations: (i) with an in-span hinge, and (ii) without in-span 
hinge (i.e. continuous deck). Moreover, the effect of superstructure curvature is 
evaluated by varying the radius of curvature from low to high (a bridge with a high 
radius approaches a straight bridge configuration). The analysis results indicate that 
curvature significantly affects the seismic response of the considered bridge, 
particularly for the model which includes an in-span hinge. 
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INTRODUCTION 

 
Multi-frame bridges are constructed with at least one intermediate (or in-span) hinge 
that is used to release strains triggered by various sources such as temperature and 
post-tensioning during construction (DesRoches & Fenves, 1997) and to allow 
relative longitudinal movements of the deck elements. Understanding the effect of 
expansion joint closure in curved bridges is limited since there are inadequate 
experimental studies focusing on this phenomenon. During the 1971 San Fernando 
earthquake in 1971, several curved bridges experienced severe damage such as the 
collapse of the superstructure in the south overcrossing connector due to the 
longitudinal displacement of the superstructure and the unseating at the hinge 
locations (Fung, 1971). Moreover, numerous bridge failures were caused by the 
superstructure unseating at expansion joints as a result of inadequate seat widths and 
large relative movements of adjacent frames (Penzien & Thiel, 2003), and in some 
cases, the decks fell down even though the other bridge elements were not damaged 
(Housner, 1990). The major interchange at State Route 14 and Interstate Route 5, 
which is a long curved connector, encountered extensive damage at the intermediate 
hinge and the collapse of the end spans (Penzien & Thiel, 2003), in the 1994 
Northridge earthquake. Post-earthquake investigations of bridge failures induced 
significant modifications in seismic design codes of bridges. For instance, the seismic 
bridge design criteria by Caltrans (2006) increased seat widths – 6-8 inches 
before1971, 12 inches between 1971 and 1994, and 24 inches after 1994 at expansion 
joint hinges. In addition, restrainers should be installed in hinges in the retrofit 
process. Although these criteria show improvements in the general performance of 
regular bridges, additional research is required to test the performance of non-
standard bridges with complex alignments such as curved bridges.     

Following the 1971 San Fernando earthquake that caused failure of curved bridges, 
Williams & Godden (1979) performed experimental studies to a long-span curved 
bridge and discovered that inclusion of intermediate expansion joints in a curved 
bridge leads to extensive damage. Similar to the intermediate hinge damage, 
unseating in seat type abutment bridges is also a potential mode of damage in curved 
bridges with insufficient seat length. In this study, the seismic performance of curved 
bridges with two different types of deck continuity (i.e., bridge deck (i) with an in-
span hinge and (ii) without in-span hinges) is evaluated.  

Past studies investigated the effect of curvature on the bridge responses mainly 
focusing on the steel bridges (Abdel-Salam & Heins, 1988; Galindo, et al., 2009; Seo 
& Linzell, 2011). These studies demonstrate that as the curvature increases, curved 
bridges are more susceptible to damage due to deck unseating and pounding. Seo and 
Linzell (2012) identified parameters including number of spans, span length, and 
radius of curvature as the significant factors affecting the bearing translations of 
continuous curved bridges.  

More recently, researchers evaluated the performance of concrete curved bridges. 
Araújo et al. (2014) focused on the pushover analysis of a set of short reinforced 
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concrete curved bridges and explored the influence of various load directions on the 
seismic analysis. Based on their study, the curved bridges exhibit multi-directional 
dynamic responses and a higher sensitivity to the earthquake direction compared to 
the straight bridges. This effect amplified as the curvature increased which proved the 
need for an accurate seismic assessment of curved bridges to avoid underestimating 
their seismic response. Tondini and Stojadinovic (2012) examined the seismic 
behavior of three different prototypes of a curved box-girder bridge. Their study 
indicated that the transverse column deformation ductility demand increases with 
increasing the curvature, and that the fragility corresponding to the column drift is 
affected primarily by the curvature regardless of the height of the columns. Their 
research focused only on a bridge with a continuous deck, and the only considered 
seismic demand was the column drift. Instead, the present paper looks into the 
damage to various structural elements of curved bridges with and without in-span 
hinges.    

Pahlavan, et al. (2015) performed fragility analysis of two-frame curved bridges. 
They found curvature as the key parameter dominating the fragility of multi-frame 
bridges. However, their study concentrated on the fragility analysis of the entire 
bridge rather than the seismic response of the bridge components. Furthermore, only 
the pounding elements are used to simulate the impacts between the adjacent deck 
elements, whereas in the current study, the in-span hinge is modeled in detail based 
on the real bridge plan to capture its actual performance. Besides, their hypothetical 
bridge configurations were multi-column bents, which are contrary to single column 
supported bridges considered in this paper since they are found to be more susceptible 
to the unseating of expansion joints, as observed in the 1971 earthquake (Housner & 
Thiel, 1995). For the analysis in the current study, uncertainties associated with the 
ground motion characteristics are considered. However, deterministic values are 
considered for the bridge geometries and material properties to investigate the 
variation of the bridge seismic performance with respect to the variations of the 
curvature and ground motion characteristics.   

NUMERICAL MODELING OF CURVED BRIDGE 

An existing horizontally curved bridge, S505-E80 CONNECTOR OC, constructed in 
1963 and located in Vacaville city in California, is selected for the investigation of 
this study. This connector bridge is a four-span, three-cell, box-girder bridge, 
supported on reinforced concrete (RC) single column bents with spread footings, and 
the abutments are supported by RC piles. Figure 1 provides views of the selected 
bridge. 

This bridge consists of 4 spans with the left span length of 43ft (13.1m) and the 
remaining three spans of 85ft (25.9m) length. The radius of curvature (R0) is equal to 
250ft (76.2m), and the bridge is divided into two separate frames connected by an 
intermediate hinge. Similar column heights make the bridge have a balanced stiffness 
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SEISMIC ANALYSIS AND RESULTS 

Nonlinear Time History Analysis (NLTHA) is performed on the bridge models using 
Baker’s suite of 160 ground motions (Baker, et al., 2011). These excitations have 
longitudinal and orthogonal components and are oriented randomly to the 
longitudinal and transverse directions of the bridge models. The results of this 
analysis provide the peak seismic response for each of the bridge components during 
each one of the time history analyses. The peak responses are used to produce 
probabilistic seismic demand models (PSDM). Probabilistic seismic demand models 
(PSDM) are regression models expressing the relationship between seismic demands 
( D ) and ground motion intensities ( IM ) (Cornell, et al., 2002). Based on this 
regression model, the median value of the seismic demand ( dS ) can be estimated for 

a specific ground motion intensity, as shown in Eq. 1, ܵௗ =  Eq. (1)          (ܯܫ)	ܽ

where a  and b  are the regression coefficients that are obtained by performing a 
regression analysis on D IM−  pairs. Dispersion ( |d IMβ ) is calculated based on Eq. 2. 

( )2

1
|IM

ln ( ) ln ( )
   ,  = total number of data points

2

N

i d
i

d

D S
N

N
β =

−
=

−


   Eq. (2) 

Comparison of the results is provided in the following presented figures. Figure 6 
shows the generated seismic demands versus the ground motion intensities, for the six 
various bridge types: (1) continuous bridge with straight deck, (2) continuous bridge 
with curved deck and radius of curvature equal to R0, (3) continuous bridge with 
curved deck and radius of curvature equal to 2R0, (4) straight bridge with one in-span 
hinge, (5) curved bridge with one in-span hinge and radius of curvature equal to R0, 
and (6) curved bridge with one in-span hinge and radius of curvature equal to 2R0. 
Figure 7 presents the response plots along with the mean values of 160 simulations 
and helps to observe the general trend of the seismic demands across various cases. 
Figure 8 illustrates the differences between the seismic response distributions based 
on the variations of the curvature in bridges with in-span hinges. Figure 9 depicts 
comparisons of the two-parameter lognormal probability distributions of the bridge 
deck displacement based on the ground motion intensity measure.  
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Figure 9. Comparison of the seismic demands 

 

The seismic performance of the bridge models is evaluated by comparing their 
simulated probabilistic demands including column, deck, and abutment. Assessment 
of the generated bridge responses indicates the impact of curvature and the existence 
of the in-span hinge on the bridge seismic response. Among the considered scenarios, 
the bridge seismic response increases as the curvature increases. In general, the higher 
seismic demand of curved bridges indicates that this bridge type is more vulnerable 
than the straight bridge. Although the findings of this paper help to better understand 
the curved bridge performance, the conclusions of this paper may be limited to the 
selected box-girder bridge for the purpose of this case study, and hence the findings 
may not be generalized to all types of curved bridges. In order to broaden the 
knowledge in this area, the authors are working to expand this study and investigate 
more curved bridges with a variety of structural configurations.    

Following are the summary of the key findings: 

  
• According to the comparison of the seismic responses (e.g. deck 

displacement), it is observed that curved bridges show higher demands than 
straight bridges, and the demands increase as the curvature increases.  
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• Based on the probabilistic seismic demand models of the deck displacements, 
larger values are noted for the continuous bridges compared to the bridges 
with in-span hinges. This phenomenon is caused by the in-span hinge that 
releases strain within the bridge deck.   

• Comparison of the probability distribution of the demands illustrates that as 
the curvature increases, the demands are shifted towards the tails of the 
distribution and particularly to the right tail that indicates the increase in the 
demand as the curvature increases.  

• The response variations are more notable for the deck displacement and the 
column curvature ductility than the abutment responses. Based on the 
previous studies (Ramanathan, 2012) on the bridge fragilities, the deck 
displacement and the column curvature ductility are more significant than the 
abutment responses on identifying the vulnerability of a box-girder bridge.  

 

CONCLUSIONS 

 

The experience of past earthquakes revealed that bridges with intermediate hinges 
had damage, particularly around the expansion joints. Moreover, the bridge curvature 
leads to a complex dynamic behavior. The combination of curvature with in-span 
hinges requires more investigation since it can influence the overall bridge 
sustainability under earthquakes and the seismic performance of curved bridges has 
not been investigated thoroughly yet. To address a part of this deficiency, this paper 
attempts to assess the seismic performance of concrete box-girder curved bridges 
with in-span hinges. 

Three-dimensional numerical models of the hypothetical bridge with various 
curvatures are created in OpenSees. The bridge models are considered with two deck 
continuity features: one model includes an intermediate hinge, and the other model 
includes a continuous deck. Using a selected set of ground motions, nonlinear time 
history analysis is performed on the created models to derive structural responses. 
The seismic performance of the bridge models is evaluated by comparing their 
probabilistic seismic demands including column, deck, and abutment. Assessment of 
the generated curves indicates the impact of curvature and the existence of in-span 
hinge on the bridge seismic response. Among the considered scenarios, the bridge 
seismic response increases as the curvature increases.  

In general, the higher seismic demand of curved bridges indicates that curved bridges 
are more vulnerable than straight bridges. However, the findings described in this 
paper can be limited to the considered box-girder bridge for the case study and may 
not be generalized to all curved bridges since the research on curved bridges is 
limited by the time. Therefore, future research of the authors will be focused on the 
probabilistic assessment of curved bridges with different abutment types, long spans 
versus short spans, various column heights, and more than one in-span hinge.  
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