
Using Machine Learning for the Performance-Based Seismic Assessment of Slope Systems 

 

Chenying Liu1; Jorge Macedo, Ph.D.2; and Farahnaz Soleimani, Ph.D.3 

 
1Graduate Student Researcher, Dept. of Civil and Environmental Engineering, Georgia Institute 

of Technology, Atlanta. Email: cliu662@gatech.edu 
2Assistant Professor, Dept. of Civil and Environmental Engineering, Georgia Institute of 

Technology, Atlanta. Email: jorge.macedo@ce.gatech.edu 
3Dept. of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta. 

Email: farahnazsoleimani@gmail.com 

 

ABSTRACT 

 

Engineers often use analytical procedures, which estimate the amount of seismically induced 

slope displacements (D), to evaluate the seismic performance of earth structures and natural 

slopes. These procedures often use as inputs slope properties, earthquake parameters, and ground 

motion intensity measures (IMs). In this study, we propose a new set of machine learning (ML) 

based models to estimate D using the NGA-West2 shallow crustal ground motion database. Our 

findings suggest that the most efficient features to evaluate the seismic performance of slope 

systems are the slope’s yield coefficient (ky), its fundamental period (Ts), the earthquake 

magnitude (Mw), the peak ground velocity (PGV), and the degraded spectral acceleration at 1.3 

Ts. We assess the performance of the proposed models by evaluating cross-validation errors, their 

predictive performance in case histories, and comparisons against existing models. Based on the 

assessments, we recommend 6 ML-based models to estimate D in engineering practice. 

 

INTRODUCTION 

 

The seismic performance assessment of slope systems is typically performed by: (a) 

Newmark-based slope displacement analyses, (b) pseudo-static slope stability analyses, and (c) 

advanced numerical procedures, such as finite elements or finite differences (Macedo et al. 

2020). Even though advanced numerical analyses are increasingly used in practice, method (a) is 

preferred in engineering practice for its simplicity, particularly in the preliminary design stages. 

Method (b) is also still used in practice mainly because some regulators explicitly request its 

application as part of the evaluation of the seismic stability of slope systems, at least in projects 

with a low associated risk (e.g., MEM, 1997; Ministerio de Mineria, 2007; APEGBC, 2010; 

FHWA, 2011; Moreno and Kendall, 2019; Macedo and Candia, 2020). Newmark-based slope 

displacement analyses are typically based on seismic sliding block displacement analysis, which 

estimates the amount of seismically-induced slope displacements (D). When a D model is 

developed, Newmark-based approaches are typically used with a ground motion database to 

generate D realizations, which are subsequently used to develop semiempirical D models. A 

fundamental input for developing a D model is the selection of efficient parameters that can 

explain the trends in D. These parameters are often selected among candidates such as the 

earthquake magnitude (Mw), rupture distance (ClstD), and ground motion intensity measure 

parameters (IMs). Previous efforts have typically used fixed functional forms consisting of 

polynomials of ln(IM) (often first or second-degree polynomials) to select efficient IMs by 

calculating the standard deviation of linear regressions where the IM is changed iteratively, 
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typically considering only one IM at the time (e.g., Bray and Travasarou, 2007). As opposed to 

traditional approaches, several well-established machine-learning (ML)-based procedures have 

been developed to guide the selection of efficient features to estimate D in a more holistic 

manner. In addition, ML-based models have the potential to better capture the complex 

relationships between the input and response variables without restriction to relatively simple 

functional forms as in traditional models. Thus, their use in performance-based earthquake 

engineering is appealing (Xie et al., 2020). There have been relatively few previous studies in the 

context of the estimation of seismically-induced displacements in slope systems. For example, 

Wang et al. (2020) built a predictive model based on the extreme gradient boosting (XGboost) 

algorithm using a dataset containing 43,832 seismic slope displacements. They used three 

different sets of input features: peak ground acceleration (PGA), peak ground velocity (PGV); 

PGA and arias intensity (Ia); and PGA, PGV and Ia, and found that their XGBoost-based models 

were superior to the traditional semiempirical counterparts. More recently, Cho (2020) 

developed a multi-layer perceptron network based on a database with 42,040 D realizations. In 

terms of the input features, they considered the slope’s yield coefficient (ky), initial fundamental 

period (Ts), and PGV. Compared to the traditional models developed by Cho and Rathjie (2020) 

with a similar database, the proposed multi-layer perceptron model improved the prediction of 

median displacements. Thus, these previous studies highlight the potential benefits of ML-based 

procedures against their traditional counterparts to estimate D. Although these models are a step 

forward in performance-based earthquake engineering, they also have some limitations. For 

example, the model in Wang et al. (2020) is nonparametric, which may introduce challenges in 

terms of interpretability (Hastie et al., 2009). Moreover, the previous referred models have not 

been evaluated against case histories, they did not use an extensive ground motion database (e.g., 

the NGA-West2 database Bozorgnia et al., 2014 used in this study), and they used IMs inherited 

from traditional semiempirical models without a systematic feature selection. In this study, ML-

based procedures are used for selecting efficient parameters used to develop new ML-based 

models to estimate D for regions affected by shallow crustal earthquakes. The considered 

machine-learning techniques include multiple feature selection techniques and regression 

models. The ML-based procedures developed in this study consider a large ground motion 

database (i.e., the NGA-West2 database), both parametric and nonparametric models to balance 

the tradeoff between model interpretability and prediction performance (Hastie et al., 2009), and 

case histories as an additional metric to evaluate the performance of the formulated models.  

 

DATABASE 

 

We use the NGA-West2 database for shallow crustal earthquakes, which contains 21,332 

three-component ground motion recordings (Bozorgnia et al., 2014). For the estimation of D, 

ground motion records are chosen from earthquakes with Mw from 5 to 7.9 at ClstD less than 200 

km and site classes A, B, C, and D (ICC, 2015). A total of 6,711 ground motion records (with 

each record having two horizontal components) are employed to generate the D data. Figure 1 

shows the distribution of Mw and CIstD for the ground motions used in this study. We employ 

the fully coupled, nonlinear, deformable stick-slip sliding model proposed by Rathje and Bray 

(1999), with the modifications in Macedo (2017) and Macedo et al. (2017) to estimate 

seismically-induced displacements. In this model, the dynamic response of the deformable 

sliding mass is captured by an equivalent-linear viscoelastic modal analysis that uses strain-

dependent material properties. We used the ground motions in the database as inputs to the fully 
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coupled stick-slip model. The fully coupled stick-slip sliding model is characterized by its ky, 

ranging from 0.01 to 0.8, and its Ts, ranging from 0 to 2. The properties assigned to the model (ky 

and Ts) represent a wide range of natural earth slopes, earth dams, and solid-waste landfills. Then 

each ground motion recording in the database is applied to the base of the fully coupled stick-slip 

model to calculate D values. The D values calculated from the two horizontal components are 

averaged. More details on the slope properties and calculation of D values can be found in 

Macedo et al. (2021). 

 

 
 

Figure 1. Magnitude and distance distribution for the ground motions recordings used in 

this study. 

 

The list of the collected features that are considered as candidates to estimate D include slope 

properties, earthquake parameters, and IMs (calculated as the geometric mean of the two 

horizontal recorded components). Specifically, we considered 21 features: ky, Ts, significant 

duration (d5-95), Mw, ClstD, Vs30 (time-averaged shear wave velocity in the top 30m), Ia, PGA, 

PGV, and Sa (nTs) (spectral acceleration at a degraded period equal to nTs, with n = 1.0, 1.1, 1.2, 

1.3, 1.4, 1.5, 1.6, 1.7, 1.8, 2.0, 2.5, 3.0). Following common ML practices (e.g., Hastie et al., 

2009), we divide the database into a training-validation set and a test set. The training-validation 

set (contains 90% of the entire data) is used to train the model parameters, and if necessary (i.e., 

for ML models with hyperparameters), is further split into 10 cross-validation folds for the 

optimization of hyperparameters. The remaining 10% data are used as the test set to compare the 

predictive performance of the models. Additional details on the cross-validations can be found in 

Macedo et al. (2021). 

 

FEATURE SELECTION 

 

The 21 parameters described previously are used as feature candidates to develop D 

predictive models. Sparse regression algorithms (Forward Stepwise Regression (FSS), LASSO 

(Least Absolute Shrinkage and Selection Operator), and Random Forest), are implemented to 

determine an appropriate combination of features to explain D. Detailed explanation of the 

feature selection algorithms can be found in Krishnapuram et al. (2013), Cawley et al. (2007), 

Hastie et al. (2009), and Macedo et al. (2021). The feature selection results are assessed using the 

training-validation set with 10-fold cross-validation. Figure 2, obtained from FSS, displays the 
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prediction accuracy averaged across 10 validation folds for each number of features. Figure 2 

shows that as the number of features increases, the prediction accuracy increases rapidly, but 

soon bounded by a threshold of around 75%. The gap between 100% and 75% corresponds to the 

inherent noises and existing nonlinearity in the dataset. According to this graph, five features (ky, 

Ts, Mw, PGV, and Sa(1.3 Ts)) can be selected by FSS as the optimum number since the 

improvement of prediction power is insignificant after that. The LASSO approach tends to select 

as many features as possible to achieve the minimum mean squared error (MSE), hence, all 

features excepted d5-95, Sa(1.7 Ts), and Ia (i.e., totally 18 features) are selected. LASSO results 

are used as corroboration for feature selection of the other techniques and provide a benchmark 

for the performance evaluation of other approaches. For random forest, six features (ky, PGV, Ts, 

Sa(1 Ts), Sa(1.1 Ts), and Mw) with highest importance are selected. The features selected by 

Random Forest and Forward Stepwise Selection are both subsets of the 18 features selected by 

LASSO. The performance of the three feature selection techniques is compared with a full linear 

model (including all features) in terms of the prediction accuracy and MSE on the test set. Both 

the full linear and the LASSO model which has a large number of features, show no significant 

improvement in performance compared to other cases. Random Forest performed best among the 

applied techniques, showing the highest prediction accuracy and lowest MSE. The Forward 

Stepwise Selection technique with five features performed close to Random Forest. Besides, 

Forward Selection exhibits a comparable prediction accuracy and MSE to those of the full linear 

model. In summary, both Random Forest and Forward Stepwise Selection registered that optimal 

efficiency (i.e., high prediction accuracy and low MSE) can be achieved considering a reduced 

number of features. Although Random Forest identified six features as the most influential 

predictors in estimating D, the Forward Stepwise technique revealed no notable improvement in 

the prediction power beyond five features, as demonstrated in Figure 2. In addition, in terms of 

the features selected by Random Forest, two of them are highly correlated (i.e., Sa(1.0 Ts), and 

Sa(1.1 Ts)). Thus, the selected influential features are ky, Ts, Mw, PGV, and Sa(1.3 Ts), which will 

be used in the subsequent sections to propose D predictive models.  

 

 
 

Figure 2. Forward Selection: averaged prediction accuracy vs. the number of features. 

 

PREDICTIVE MODELS 

 

Based on the features selected using the feature selection algorithms, we implement 19 

machine-learning-based models (M1 to M19) with different degrees of flexibility to estimate D, 

which are summarized in Table 1 (Check Macedo et al., 2021 for detailed model definitions). 

The hyperparameters of the ML models are optimized through a grid-search method based on 
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their performance in the training-validation set (more details on hyperparameter optimization can 

be found in Macedo et al., 2021). Finally, the performance of different ML models with 

optimized parameters is evaluated based on their prediction accuracy and MSE on the test set, as 

summarized in Table 1. The main outcomes include: (a) nonlinear models and second-order 

polynomials (i.e., M4 to M19) show the highest accuracy and the lowest MSE, models that used 

the full set of features ranked first; however, models that used five features ranked close. (b) 

Principal component regression (PCR) uses more principal components than partial least square 

regression (PLSR); however, it does not exhibit better performance. The variation in the 

response variable, which is not captured by PCR, causes the lower efficiency of this approach. 

Overall, PLSR and PCR do not provide models with good performance for the database 

considered in this study. (c) Polynomial models with lower orders have better performance than 

polynomials with higher orders since the higher-order polynomials are more likely to overfit the 

data in the training process. (d) The tree-based methods (M4 to M7) perform similarly in terms 

of prediction accuracy and MSE.  

In summary, the top-ranked candidate predictive models (models with five features, which 

are preferred due to their simplicity) based on the MSE and prediction accuracy are M18 

(Gaussian Kernel), M4 (Bagging and Boosting), M6 (Random Forest), M16 (2nd order fully 

polynomial regression model), M17 (Multi-order polynomial regression model), M15 (2nd order 

polynomial regression model with linear and interactive terms), and M1 (Generalized Linear 

regression model). All these models (except M1) have an MSE lower than 0.3. To compare these 

models with an existing model that is commonly used in practice, we have also calculated the 

MSE for the Bray and Macedo (2019) model (BM2019) (this model is an update of the Bray and 

Travasarou (2007) model that has been widely used in engineering practice), which is 0.51 and 

larger than most of the MSE in the models listed above. Figures 3 and 4 show illustrative trends 

for selected models (models M16 and M17); the trends are presented in terms of variations of ky, 

Ts, Sa(1.3 Ts), and Mw (calculation of Sa(1.3 Ts) and more plots for other models are detailed in 

Macedo et al., 2021). In general, we observed that most of the models with low MSE show 

consistent qualitative trend patterns as those in the BM2019 model. D increases initially with the 

increase of Ts and then decreases as Ts keeps increasing; D decreases with the increase of ky, and 

finally, D increases with the increase of Mw and Sa(1.3 Ts). 

 

PERFORMANCE OF THE PROPOSED MODELS IN CASE HISTORIES 

 

This section evaluates the performance of the models proposed in the previous sections 

considering the case histories compiled by Bray and Travasarou (2007). Table 2 presents the 

details of the case histories, which are associated with the observed seismic performance of 

different slope systems (e.g., earth dams and waste landfills) that were affected by shallow 

crustal earthquakes. We have used the mean squared prediction error (MSPE, see Macedo et al., 

2021) to indicate the predictive performance on case histories. Figure 5 present the MSPEs for 

the different models considered in this study when they are evaluated against case histories. 

Figure 6 shows the comparison of predicted D values from the selected models with observed D 

values in the case histories (See a full list of plots for all models in Macedo et al., 2021). In 

addition, the bars in Figure 6 correspond to 95% confidence intervals. Models M1, M17, M8, 

M16, M15, and M12, have MSPE values that vary between 37 to 47, featuring a good 

performance against case histories. These models predict a good seismic performance (small D) 

when the observed performance was good, and they also predict potential damage (large D) 
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when the observed D values were large. Models M6 and M18 have MSPE values of 128 and 

183, respectively. These models are also capable of distinguishing between different levels of 

seismic performance, but their MSPE values are inflated by their conservative predictions on 

case histories 5 and 6. The other models, M13 and M14, which are polynomials of 3rd and 4th 

order, have quite large MSPEs, and they present a poor performance. These models are very 

sensitive to changes in the input variables due to their high-order polynomials. 

 

Table 1. Performance comparison of the developed predictive models 

 

Models Algorithms Features used 
Prediction 

Accuracy 
  MSE 

M1 Generalized Linear Model 5 features chosen previously 0.730 0.384 

M2 Partial Least Square Regression 3 principal components 0.723 0.403 

M3 Principal Component Regression 5 principal components 0.691 0.498 

M4 Bagging and Boosting 5 features chosen previously 0.866 0.227 

M5 Bagging and Boosting All 21 features 0.904 0.161 

M6 Random Forest 5 features chosen previously 0.847 0.244 

M7 Random Forest All 21 features 0.887 0.197 

M8 
Polynomial 2nd order  

(w/o interactive variables)  

Repeated feature selection for 

this model format 
0.697 0.486 

M9 
Polynomial 3rd order  

(w/o interactive variables) 

Repeated feature selection for 

this model format 
0.651 0.635 

M10 
Polynomial 2nd order (combination 

of linear and interactive variables)  

Repeated feature selection for 

this model format 
0.824 0.170 

M11 

Polynomial 2nd order (combination 

of linear, squared and interactive 

variables)  

Repeated feature selection for 

this model format 
0.847 0.126 

M12 
Polynomial 2nd order  

(w/o interactive variables) 
5 features chosen previously 0.687 0.517 

M13 
Polynomial 3rd order  

(w/o interactive variables) 
5 features chosen previously 0.630 0.715 

M14 
Polynomial 4th order  

(w/o interactive variables) 
5 features chosen previously 0.570 0.949 

M15 
Polynomial 2nd order (combination 

of linear and interactive variables) 

5 features chosen previously, 

then repeated feature selection 
0.760 0.301 

M16 

Polynomial 2nd order (combination 

of linear, squared and interactive 

variables) 

5 features chosen previously, 

then repeated feature selection 
0.781 0.248 

M17 Multi-order 
5 features chosen previously, 

then repeated feature selection 
0.772 0.275 

M18 Kernel 5 features 0.798 0.216 

M19 Kernel 21 features 0.800 0.204 

M20 BM2019  4 features  0.686 0.512 

 

RECOMMENDED MODELS 

 

We have ranked the models according to three criteria: the MSE on the test set, their 

performance on case histories, and their trends when compared to the BM2019 model, which 

was selected due to its fast-growing usage in engineering practice. The ranking metrics can be 

found in Macedo et al. (2021). As previously discussed, models with a lower number of input 
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variables are desired from a practical perspective due to their simplicity. Hence, we recommend 

models with five features, which correspond to models M16, M15, M17, and M18. Model M1 

can also be used when Ts < 0.8 s (beyond this range, the extrapolation can be problematic). 

Finally, model M6 can also be considered if only discrete estimates are desired, because it cannot 

provide continuous trends (e.g., see the trends for this model in Macedo et al., 2021).  

 

 
 

Figure 3. Model trends for the variations of ky, Ts, Sa(1.3 Ts), and Mw. Dashed lines: 

BM2019 model, solid lines: M16. 

 

 
 

Figure 4. Model trends for the variations of ky, Ts, Sa(1.3 Ts), and Mw. Dashed lines: 

BM2019 model, solid lines: M17. 

 

Table 2. Characteristics of the case histories of observed slope displacements 

 

Case System EQ 
Observed Dmax 

(cm)  
ky Ts M CIstD Vs30 

1 Buena Vista LF  1989 Loma Prieta None 0.26 0.64 6.9 14.5 350 

2 Guadalupe LF 1989 Loma Prieta Minor 0.20 0.64 6.9 20.1 760 

3 Pacheco Pass LF 1989 Loma Prieta None 0.30 0.76 6.9 35.4 760 

4 Marina LF  1989 Loma Prieta None 0.26 0.59 6.9 37 300 

5 Austrian Dam 1989 Loma Prieta 50 0.14 0.33 6.9 3 500 

6 Lexington Dam 1989 Loma Prieta 15 0.11 0.31 6.9 5 550 

7 Lopez Canyon C-A LF 1994 Northridge None 0.27 0.64 6.7 8.4 600 

8 Lopez Canyon C-B LF 1994 Northridge None 0.35 0.45 6.7 8.4 600 

9 Chiquita Canyon C LF 1994 Northridge 24 0.09 0.64 6.7 5 600 

10 Chiquita Canyon D LF 1994 Northridge 30 0.10 0.64 6.7 5 600 

11 Sunshine Canyon LF 1994 Northridge 30 0.31 0.77 6.7 7 600 

12 Oll Section HH LF 1994 Northridge 15 0.08 0.00 6.7 43 600 

13 Chabot Dam 1906 San Francisco Minor 0.14 0.55 7.9 32 760 
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Figure 5. MSPE comparison based on estimations for the case histories. 

 

 

 
 

Figure 6. Performance of selected models on case histories (see Table 6 for the case 

histories details). 

 

CONCLUSIONS  

 

ML-based models can better capture the complex relationships between the inputs and 

response variable (i.e., seismically-induced displacements (D)) without restrictions to relatively 

simple functional forms as in traditional models formulated in the context of estimating D. With 

the current momentum in machine learning, the use of ML-based methods in performance-based 

earthquake engineering is appealing as also highlighted by previous efforts. In this study, we 

have proposed a new set of ML-based models to estimate D in slope systems affected by shallow 

crustal earthquakes using the NGA-West2 ground motion database. The selection of optimal 

features showed that ky, Ts, Mw, PGV, and Sa(1.3 Ts) are the optimal features for estimating D. 

we developed a total of 19 models using a variety of ML techniques (listed in Table 1), 12 
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models consider the five selected optimal features, and 7 additional models consider a full set of 

features for comparison purposes. In general, we observed that nonlinear models (e.g., Random 

Forest), generalized linear models, 2nd order polynomials, and kernel-based models showed 

higher prediction accuracies and lower MSE. On the other hand, PLSR, PCR, and 3rd-4th order 

polynomial models did not perform well. We also found that the performance of models with 

five features is comparable to the performance of models with a full set of features; hence, they 

have advantages for practical applications. We performed an overall assessment of the developed 

models considering MSE on the test set, their performance on case histories, and their trends for 

variations of slope properties, earthquake parameters, and IMs. Based on this assessment, we 

recommend the following models: M16, M15, and M17, which correspond to polynomial-based 

models; and M18, which is a kernel-based model. We also recommend model M1 (a generalized 

linear model) when Ts < 0.8 s, and model M6 (Random Forest) can also be used, even though it 

cannot provide continuous estimates. The recommended models in this study can be used in 

engineering practice to evaluate the seismic performance of slope systems (through the 

estimation of D). These models also enhance the treatment of epistemic uncertainties in the 

estimation of D, which is desired given the scarcity of robust D models. Finally, the developed 

models have been integrated into the software SeismicHazard (Candia et al, 2019; Candia et al., 

2018) for facilitating their use. The related scripts are available at: 

https://github.com/fmc202/MLslopedisplacement 
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