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A B S T R A C T   

Probabilistic seismic demands of bridge components such as bridge column and deck are conventionally 
expressed as a power-law function of a single ground motion intensity measure. This unidimensional probabi
listic seismic demand model (PSDM) was introduced more than two decades ago, and since then, it was 
commonly used to estimate seismic demands. Over the recent years, an extensive body of research has been 
evolved to propose alternative PSDMs, but none has been proved to be dominantly superior over other ap
proaches. There yet remains a milestone to enrich predictions provided by PSDMs and expanding their appli
cation beyond certain methodology, particular functional form, and corresponding assumptions on the 
distribution of the demands. Given the advancements in computational technologies which lead to the growth of 
diverse analytically-driven data, machine learning (ML) approaches have a tremendous potential to revolutionize 
predictions of seismic demands. This study presents a comprehensive appraisal of ML-based PSDMs to further 
expand the research advances in this domain and leverage the efficiency and advantages that ML methods offer 
compared to the unidimensional model. To this end, the efficiency of a variety of parametric and non-parametric 
ML algorithms with different degrees of flexibility are explored to estimate the demands associated with the 
primary bridge components. Moreover, by applying ML-based variable selection techniques, this study assesses 
the level of influence of the random variables on the generated PSDMs. These variables are used for the treatment 
of inherent uncertainties in material, geometric, structural, and ground motion parameters. As part of the 
appraisal, a ranking is provided for the investigated 39 models, such as Generalized Linear Models, Multi-order 
regressions, Bagging and Boosting, and Kernel-based models, according to their statistical performance in esti
mating the individual demands.   

1. Introduction 

The efficiency of probabilistic seismic demand models (PSDMs) 
governs the overall outcome of seismic performance analysis of bridges 
[16,15] in a postulated seismic hazard scenario and subsequent post- 
hazard decision makings as these demand models are typically used to 
derive analytical fragility curves and cover various sources of aleatory 
and epistemic uncertainties [39,2,5,34]. However, developing an effi
cient and practical framework for PSDM is challenging. 

PSDM, initially formulated by Shome et al. in 1998, provides an 
estimation of the median value of the seismic demand (μSD) as a power- 
law function of a ground motion intensity measure (IM) as displayed in 
Eq. (1) in which a and b are the regression coefficients. Based upon the 
lognormality assumption of the seismic demands [30,12,4], the demand 
models are commonly expressed in a transformed natural logarithmic 
space as shown in Eq. (2). 

μSD = a(IM)
b (1)  

ln(μSD) = ln(a)+ b.ln(IM) (2) 

Although the conventional model is simple to implement, it can be 
improved in multiple aspects (e.g., boosting prediction power of the 
model, incorporating additional predictors from uncertain parameters, 
such as ground motion and structural-related characteristics into the 
formulation) particularly by applying thriving machine learning (ML) 
algorithms. 

Over the last two decades, a substantial body of research, predomi
nantly evolved around the concept of metamodels, has been conducted 
to extend the widely used univariate PSDM to multivariate regression. 
For example, Ghosh et al. [8] considered the classical 2nd order poly
nomial response surface model (PRSM), multivariate adaptive regres
sion splines (MARS) [7], and radial basis function (RBF) [11] and 11 
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bridge modeling parameters, IM-related input variables, and deteriora
tion affected parameters as the input variables in the demand models. 
Kameshwar and Padgett [14] applied PRSM, adaptive basis function 
construction (ABFC) [13], and RBF with 9 input parameters including 
the material and geometric properties of bridges. Most of the previous 
studies [24,27,28,29,25] that used PRSM adapted the 2nd order type 
while the application of the polynomial orders higher than 2 has 
received less attention. These studies investigated horizontally curved 
steel I-girder bridges and steel-plate-girder bridges and included peak 
ground acceleration (PGA) and bridge geometries as the potential input 
variables. 

Despite the growing body of research in developing improved de
mands models, none of the proposed methodologies has been proved to 
be dominantly superior over other approaches, and further research is 
required to tackle the remaining challenges. The lack of flexibility of the 
original unidimensional form to incorporate various sources of un
certainties could impact the reliability of the estimation of the demands. 
Besides, the attempts in including more random variables in PSDMs 
have led to overly complex models, computationally expensive, and 
overfitted models. Another shortcoming in the growing body of research 
aimed at improving the estimation of seismic demands of bridge com
ponents is the lack of systematic appraisal of different multi-parameter 
predictive models. As shown in the brief review here, previous studies 
are typically limited to regional-based bridge attributes, limited 
numbers of selective features corresponding to structural characteristics, 
and arbitrary functional forms. Furthermore, although previous efforts 
provide valuable insight into evaluating the importance of different 
inputs on estimating seismic demands of bridges, they have not typically 
considered systematic and robust approaches such as the ML-based 
variable selection techniques when dealing with large data. 

Moreover, although the application of modern ML methods in 
different fields of seismic hazard assessment has received considerable 
attention in recent years, their application in the context of PSDMs is 
rather limited as most of the reviewed literature focused on 1st and 2nd 
order regression models. As opposed to traditional approaches, ML- 
based models have the potential to capture the complex relationships 
between the input variables and the seismic demands without being 
restricted to relatively simple functional forms and prior assumption on 
the distribution of parameters as is the case in the conventional unidi
mensional model. Thus, the application of ML approaches in the 
performance-based analysis of bridges is appealing [38]. 

In summary, this study aims to address three main challenges in 
building PSDMs as highlighted in the brief state-of-the-art review: I) 
application of modern ML algorithms in building PSDMs, II) appraisal of 
different parametric and nonparametric ML algorithms in PSDMs 
application to identify the most viable approach, and III) identification 
of the optimal set of input variables as the most influential predictors. 

In order to address the first gap in knowledge, the current study 
presents an ML-based framework to develop PSDMs that leads to a more 
reliable fragility, risk and resilience estimation of bridges. Furthermore, 
this study provides a systematic appraisal of several well-established 
parametric and nonparametric ML-based models to balance the trade- 
off between model interpretability and prediction performance. The 
considered ML algorithms include a variety of linear and nonlinear 
methods such as multiple linear regression, polynomial regression, tree- 
based approaches, and Kernel-based regressions. Although recent years 
have seen an increasing number of studies in applying more methodical 
approaches, the application of advanced and robust ML methods such as 
boosted tree algorithms and Gaussian Kernel in developing PSDMs re
quires further investigation. 

In order to establish an efficient ML-based framework, it is essential 
to identify the optimum set of independent variables for the predictive 
models. As part of the formulation of PSDMs, this study evaluates the 
most influential variables that control the seismic response of bridges, 
considering an extensive list of bridge modeling parameters [32,37]. 
The overall goal of variable selection in this study is to build the best 

possible model by removing extraneous variables without sacrificing 
accuracy. The redundant variables contribute to model complexity and 
overfitting that alter the true relationship of interest. Removing this 
irrelevant information can improve the model fit, reduce the computa
tion time, and make the model more interpretable. Besides, the benefit 
of comparing the results from different variable selection methods in 
this study is to overcome the drawbacks of individual techniques. For 
example, forward selection does not always provide the best set of fea
tures since this method does not run through every single combination 
of features because of large computation time, which could also lead to a 
model with high multicollinearity [21]. In that case, Least Absolute 
Shrinkage and Selection Operator (LASSO) or Random Forest may pro
vide better results [36]. 

The following sections are organized as follows: Section 2 describes 
the analytical modeling and seismic analysis of bridges; Section 3 pro
vides an overview of the theoretical aspects of the applied ML algo
rithms, while more details are provided in Appendix B; Section 4 
presents a comparison of the model performance developed using 
different algorithms; and Section 5 summarizes the significance of the 
study and the key findings. 

2. Analytical modeling and analysis 

2.1. Description of bridge characteristics 

For the purpose of this study, a class of multi-span concrete box- 
girder bridges with the characteristics of bridges located in California 
is considered. The numerical three-dimensional models of the bridges 
are built in Opensees [19] which is a popular software in the seismic 
vulnerability assessments of bridges. The finite element models of 
bridges are created considering the nonlinearities in structural and 
material components. A “spine” modeling approach is used to represent 
the bridge superstructure as a single beam-column frame. Then, the 
substructure is built as a combination of frame and spring elements. 

As depicted in Fig. 1, the column model, connected to the super
structure elastic deck elements with rigid links, is composed of fiber 
cross-section beam-column elements including unconfined and confined 
concrete, and steel reinforcements [17,20,6]. The nonlinear behavior of 
the columns is captured by nonlinear displacement-based elements [33]. 
The class of tall bridges [35] is considered for the case study with col
umn height ratios (Hratio) ranging from low to high (slightly tall: 
1.5 ≤ Hratio < 2.5, moderately tall: 2.5 ≤ Hratio < 3.5, extremely tall: 
3.5 ≤ Hratio < 4.5) which is derived as the ratio of the average column 
height in a tall bridge divided by the average column height of the 
representative bridge with normal column height of a bridge with 
regular-sized columns (~7.5 m) [18]. The columns are more often 
constructed within the slight and moderate range, while the extremely 
tall ones are typically used in mountainous areas or span precarious 
regions such as deep ravines between mountaintops, where other bridge 
types may not be a viable option. The deformation of the column footing 
is captured using translational and rotational springs that are attached to 
the columns’ base. In the three-dimensional bridge models, the foun
dation provides a means to transfer service loads from the structure to 
the underlying soil. Elastic translational and rotational springs are used 
to model foundations and are modeled using simple linear springs. These 
springs are assigned to zero length elements located at the base of the 
bridge column, as shown in Fig. 1, to capture the longitudinal and 
transverse movements of the foundation system. The spring stiffnesses 
obtained from previous works (e.g., Ramanathan [26] in which the 
foundation system with different soil profiles was analyzed in LPILE) are 
used in this study. 

Three and four spans are randomly assigned to the simulations to 
have an equal portion of each, while similarly, spread and pile foun
dations are randomly assigned to an equal number of simulations for 
both piers and abutments. Furthermore, column cross-section (circular 
and rectangular), soil type (clay and sand), and girder type (reinforced 
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and prestressed) are the additional bridge attributes that have been 
randomly assigned. The associated abutment elements are represented 
by spring elements, and rayleigh damping with a critical ratio of 5% is 
employed. This study covers various sources of uncertainties corre
sponding to the superstructure, foundation, and substructure in addition 
to the general modeling parameters. To create the bridge samples for the 
seismic risk analysis (next section), the value of each modeling param
eter is randomly sampled from the distribution provided in Table A.1 
(see Appendix A). The distributions have been extracted from the review 
of existing bridge drawings. A detailed explanation for the modeling of 
individual components of bridges and the variability in their parameters 
can be found in previous relevant works [22,26,31]. 

2.2. Seismic performance analysis 

Conducting a seismic risk assessment of bridges entails performing a 
particular course of actions in which the modeling parameters and 
ground motions are systematically varied. In the initial phase, according 
to the Latin Hypercube sampling technique [1], representative bridge 
models are created by randomly sampling across the uncertain param
eters listed in Table A.1. Compared to pure random sampling, Latin 
Hypercube covers the probability space of the random variables and 
reduces the chance of unreasonable combinations which cause conver
gence issues when the NLTHA is performed in OpenSees and requires 
repeating the resampling process. In the next phase, the bridge samples 
are randomly paired with an equal number of ground motions. Baker’s 
series of ground motions [3] is then applied to the generated bridge 
samples with scale factors of 1 and 2, resulting in a total of 320 exci
tations. The ground motions are scaled by a factor of two as recom
mended by previous studies (e.g., [26]) on the analytical seismic 
evaluation of bridges to have sufficient response values of IMs higher 
than the highest design level in California. Performing seismic analysis 
by applying 320 ground motions on the three classes of tall bridges leads 
to a total NLTHA of 960 combinations of bridge samples and ground 
motions. These excitations are composed of longitudinal and orthogonal 
components which in the process of simulations are set to be randomly 
oriented to the longitudinal and transverse directions of the bridge 
models. 

Next, NLTHA is performed on each bridge sample to estimate the 
seismic demand of the various bridge components. The key monitored 
engineering demand parameters (EDPs) that are predicted by ML-based 
models (as the models’ outputs yi) are the commonly captured EDPs in 
the seismic analysis of bridges. Table 1 provides the list of these EDPs 
and their assigned notations that are used hereafter to simplify the 

presentation and discussion of the results. These parameters correspond 
to the maximum responses captured for each excitation. Curvature 
ductility is recorded for different locations along the column height and 
eventually the maximum value is used for developing the demand 
model. For the considered case study of concrete box-girder bridges, the 
bridge column has a connection at the column base close to fixity, and 
high curvature ductility was noted at the regions of the column close to 
the superstructure due to the large moment and shear transfer. 

This study focuses on the PSDMs that are typically used to generate 
fragility curves of box-girder bridges [22,26,31]. Therefore, the key 
engineering demand parameters (EDPs) (primary and secondary) listed 
in Table 1 are considered. The notations used in Table 1 are used 
hereafter to facilitate the presentation. The corresponding damages to 
these components directly map into the bridge system-level damage 
states and have a significant contribution in defining the bridge system 
fragility. The primary EDPs of the considered class of bridges include the 
column and abutment demands which impact the load-carrying capacity 
and overall stability of the bridge structure. Four levels of damage (i.e., 
minor, moderate, extensive, and complete) are typically considered in 
the seismic performance assessment of highway bridges and generating 
fragility curves. The extensive and complete damage of the components 
corresponding to the primary EDPs could cause closure of the bridge. 
However, significant damages corresponding to the secondary EDPs can 
cause traffic restrictions that are applied to repair the component but 
will not lead to the entire road closure. 

3. Machine-learning framework for the performance analysis 

To add to the growing body of literature and in the light of enhancing 
PSDMs, this study applies emerging ML algorithms to provide a 
comprehensive appraisal of alternative functional forms to estimate 
bridge seismic demands. This includes multiple linear regression, 

Fig. 1. Schematic layout for the analytical modeling of a three-span box-girder concrete bridge.  

Table 1 
Recorded key engineering demand parameters.  

Regression variable Seismic demand Engineering demand parameters 

y1 ln(ρc) Column curvature ductility 
y2 ln(δd) Deck displacement 
y3 ln(δf ) Foundation translational displacement 
y4 ln(θf ) Foundation rotation 
y5 ln(δa) Active abutment displacement 
y6 ln(δp) Passive abutment displacement 
y7 ln(δt) Transverse abutment displacement  
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polynomial regression, decision tree regression, and Gaussian Kernel. A 
general overview of these algorithms is provided in this section, while 
more detailed explanations with the corresponding formulations are 
provided in Appendix B. Interested readers are encouraged to refer to 
relevant statistical resources (e.g., [9]) for more details regarding the 
applied ML approaches. 

Using ML approaches, predictive models are fitted to find the rela
tionship between the captured peak values of EDPs, obtained from each 
seismic simulation (explained in the previous section), and the random 
input variables. Table 2 provides the list of feature candidates, corre
sponding to the structural modeling parameters and ground motion 
characteristics, that will be considered to formulate ML-based models to 
estimate the EDPs in Table 1. For developing the ML-based models, this 
study adopts the four common hazard computable IMs, including PGA, 
Sa(0.2 s), Sa(0.3 s), and Sa(1.0 s) (i.e., spectral acceleration at 1.0 s), for 
the seismic demands of highway bridges in the risk assessment software 
package [10,26]. In the conventional approach, Eq. (2) were used to 
express the mean captured EDPs in terms of a single parameter related to 
the ground motion IM. Fig. 2 demonstrates the general framework for 
developing ML-based PSDMs for the bridge components. 

This study investigates the application of a variety of ML algorithms 
selected from parametric and non-parametric approaches that cover 
linear and nonlinear models with different degrees of flexibility 
[46–48]. Exploring the linear models, this study develops PSDMs using 
multi-parameters linear regression (MLR), forward stepwise regression 
(FSR), LASSO, principal component regression (PCR), and partial least 
squares regression (PLSR). As shown in Eq. (3), MLR is considered as an 
extension of univariate linear regression (Eq. (2)). MLR expands the 
explanatory input variables (xj) to m = 34 to explain the response var
iable (yi in Table 1) using multiple regression coefficients α0 and αj. 

yi = α0 +
∑m=34

j=1
αjxj (3) 

Increasing the number of input variables in the PSDMs could 
improve the estimation of responses, though it could increase the model 
complexity and the chance of overfitting. In order to tackle this chal
lenge and find the optimum number of input variables for the PSDMs, 

variable selection (VS) techniques including FSR and LASSO are applied 
in this study. FSR involves a recursive process, while LASSO uses a 
regularization term (Appendix B, Eq. B.2). Using these techniques, the 
key influential input variables are identified, and new predictive models 
with reduced dimensionality compared to the MLR model are created by 
eliminating the extraneous variables and merely including the influen
tial variables in the model. Furthermore, this study applies the PCR and 
PLSR to develop low-dimensional PSDMs based on principal component 
analysis (PCA). However, opposed to the reduced models generated by 
VS techniques that use a subset of input variables, the entire list is used 
by PCR and PLSR to build PSDMs. 

Beyond the aforementioned linear models, several polynomial 
regression (PR) models (listed in Table 3) including 2nd, 3rd, and 4th 
degrees are considered to develop PSDMs [40]. The corresponding for
mulations of these PR models are provided in Appendix B, Equations B.2 
to B.17. PR predicts the response variable as a function of the pth degree 
polynomial of the input variables. A general p-degree polynomial model 
using a single input variable and a 2nd order polynomial using multiple 
input variables are expressed in Eq. (4) and Eq. (5), respectively. 

yi = α0 +
∑p

q=1
αqxq (4)  

yi = α0 +
∑m

j=1
αjxj +

∑m

j=1
αjjx2

j +
∑m

j=1

∑m

l=2,l>j
αjlxjxl (5) 

Moreover, nonlinear PSDMs are formed using ensemble learning 
algorithms (including Bagging (BG), Least-Squares Boosting (LSB), and 
Random Forest (RF)) and Gaussian Kernel (GK) method. The ensemble 
learning approaches train and combine multiple decision trees to form a 
stronger predictive model following different strategies (see Appendix 
B) [41–43]. Compared to a single decision tree, the ensemble method 
provides more accurate and robust models by reducing bias and vari
ance. Contrary to the tree-based approaches, the GK algorithm is a 
nonlinear regression technique that does not involve an iterative 
learning process [30]. The Kernel model predicts the response value y* 

at a query data point x* as depicted in Eqs. (6) and (7) using Kernel 
weight values and the distance to a set of neighboring locations xk with a 
bandwidth σ. 

y*
i =

∑q
k=1(w(x*, xk)yk)
∑q

k=1w(x*, xk)
(6)  

w(x*, xk) = exp(−
(x* − xk)

2

2σ2 ) (7)  

3.1. Training, validation, and testing of the developed models 

This study uses 85% of the available data (often known as training- 
validation set) to train the model and validate the trained models 
while tuning the hyperparameters in order to have an unbiased fitness 
assessment. This study optimizes hyperparameters of the ML algorithms 
while training the models, using a grid-search method, by minimizing 
mean squared errors (MSEs). In this process, 10-fold cross-validation, 
which is a common practice in machine learning to avoid overfitting, 
is used to randomly partition data into similar sized 10 subsets with an 
equal number of data points in each subset [9]. In an iterative process, 
the model is trained using 9 subsets and is validated on the 10th subset. 
This process is iterated 10 times. The prediction accuracy and the error 
term are computed in each iteration, and the average values across all 
folds are reported as the final values. 

The remaining 15% of the data (often known as test data) is used to 
evaluate the performance of the final tuned models. The evaluation is 
based on two measures, namely prediction accuracies and the mean 
squared error (MSE). Therefore, the model’s performance is always 
evaluated on an independent subset that is not used for training and 

Table 2 
The list of input variables for the ML-based models.  

Input 
variables 

Seismic analysis 
characteristic 

Input 
variables 

Seismic analysis 
characteristic 

x1 Soil type x18 Foundation rotational 
stiffness(translational 
direction) 

x2 Girder type x19 Foundation rotational 
stiffness(longitudinal 
direction) 

x3 Column cross section 
shape 

x20 Foundation translational 
stiffness 

x4 Abutment type x21 Concrete strength 
x5 Footing type x22 Reinforcement strength 
x6 Fixity type x23 Mass 
x7 Direction of applied 

ground motion 
x24 Damping 

x8 Number of spans x25 Span ratio 
x9 Span length x26 Column height ratio 
x10 Column height x27 Ground motion dt 
x11 Deck width x28 PGA 
x12 Number of cells in the 

box girder 
x29 Sa (1.0 s) 

x13 Girder space x30 Sa (0.2 s) 
x14 Top flange thickness x31 Sa (0.3 s) 
x15 Superstructure Depth x32 Mw 
x16 Reinforcement ratio x33 R 
x17 Abutment height x34 Vs30 

*Sa represents spectral acceleration and Vs30 represents shear-wave velocity 
averaged over the 30 m depth of soil. 
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tuning the model in order to reduce the variance of the fitted model. 

4. Performance-based development of seismic demand models 

4.1. Performance comparison of the Machine-learning-driven PSDMs 

Two groups of models are considered in this study in terms of the 
input variables. The list of 39 models, explored in this study, is provided 
in Table 4. One group is called the full model that includes the entire list 
of input parameters to develop predictive models, and the other is called 
reduced dimensionality model that uses a subset of input variables. For 
the reduced models (e.g., M15), the forward stepwise technique is 
embedded in the corresponding algorithms. For the reduced dimen
sionality models, RD is added as the suffix to the model’s name in 
Table 4. For example, BG is used for the Bagging algorithm that gener
ates a full model, while BG-RD is assigned to M7 which is a reduced 

dimensionality model developed using Bagging algorithm. 
Table 4 presents the prediction accuracy and MSE of ML-based 

models to predict the column curvature ductility, ln(ρc). Also, Fig. 3 
shows the variation of MSE across different ML-based models. Similar 
results for other EDPs are provided in Appendix C (Figs. C1-C5). The 
following remarks highlight the key findings: 

As observed in Fig. 3, the linear models, and particularly the PCR, 
were ranked lower than the other ML-based models. This implies that to 
develop the PSDMs for tall concrete box-girder bridges the linear models 
are not able to appropriately capture the complexity in the data. Among 
the linear models, MLR provided lower MSEs compared to the other 
approaches. Besides, PCR was found as the lowest in the ranking in all 
cases. 

Among the polynomial models, those involving the interactive terms 
such as the multi-degree polynomial models (MLP1, MLP2, MLP3, and 
MLP4), quadratic model (QPR), and the 2nd degree interactive model 

Fig. 2. Machine-learning framework for the development of PSDMs.  
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(PR2INT) were found more suitable than the other configurations. 
Opposed to this observation regarding the column curvature ductility, 
the polynomial models without the interactive terms, more specifically 
PLR2, PLR3, PLR4, PLR23, PLR24, and PLR234 were the highest-ranked 
PR models for the seismic demands corresponding to the deck, foun
dation, and abutment. In terms of the pure polynomial models (PR2, 
PR3, and PR4), the lower degrees performed better than the higher 
degrees in all cases. 

For the column curvature ductility, the ensemble learning methods 
(BG, LSB, RF) produced the most efficient predictive models by having 
the lowest MSEs and highest accuracies among the considered ML al
gorithms. Besides, their reduced models presented comparable perfor
mance to their full models. For example, the prediction accuracy of M6 
and M7 were 0.858 and 0.845 (Table 5). Contrary to the Boosting al
gorithm, Bagging and random forest developed the best full and reduced 
models. 

In order to predict the column curvature ductility, the GK developed 
the best-performed model. In fact, the full model derived by GK was 

found among the highest-ranked models (e.g., for the deck displace
ment, GK ranked the 3rd best model) in case of predicting the seismic 
demands of the deck, foundation, and abutment. However, the reduced 
GK model (GK-RD) did not exhibit good performance in estimating most 
of the EDPs. The only exception is the case for estimating the active and 
transverse displacement of the abutments for which the GK-RD model 
had a close MSE value to the full GK model. 

4.2. Recommended ML-based PSDMs 

The 10 best ML-based models that are recommended for each seismic 

Table 3 
The list of considered polynomial algorithms (see Appendix B for formulations).  

Annotation Algorithms Terms Type 

PR2 2nd degree PR Squared Full list of input 
variables 

PR2-RD 2nd degree PR Squared Reduced 
dimensionality 

PR3 3rd degree PR 3rd power Full list of input 
variables 

PR3-RD 3rd degree PR 3rd power Reduced 
dimensionality 

PR4 4th degree PR 4th power Full list of input 
variables 

PR4-RD 4th degree PR 4th power Reduced 
dimensionality 

PR2INT 2nd degree PR Interactive Reduced 
dimensionality 

QPR Quadratic PR 1st degree, Interactive, 
Squared 

Reduced 
dimensionality 

PLR2 2nd degree PR 1st degree, Squared Full list of input 
variables 

PLR2-RD 2nd degree PR 1st degree, Squared Reduced 
dimensionality 

PLR3 3rd degree PR 1st degree, 3rd power Full list of input 
variables 

PLR3-RD 3rd degree PR 1st degree, 3rd power Reduced 
dimensionality 

PLR4 4th degree PR 1st degree, 4th power Full list of input 
variables 

PLR4-RD 4th degree PR 1st degree, 4th power Reduced 
dimensionality 

PLR23 2nd and 3rd 
degree PR 

1st degree, Squared, 3rd 
power 

Full list of input 
variables 

PLR23-RD 2nd and 3rd 
degree PR 

1st degree, Squared, 3rd 
power 

Reduced 
dimensionality 

PLR234 2nd, 3rd, 4th 
degree PR 

1st degree, Squared, 3rd 
and 4th power 

Full list of input 
variables 

PLR234- 
RD 

2nd, 3rd, 4th 
degree PR 

1st degree, Squared, 3rd 
and 4th power 

Reduced 
dimensionality 

PLR24 2nd and 4th 
degree PR 

1st degree, Squared and 
4th power 

Full list of input 
variables 

PLR24-RD 2nd and 4th 
degree PR 

1st degree, Squared and 
4th power 

Reduced 
dimensionality 

PLR34 3rd and 4th 
degree PR 

1st degree, 3rd and 4th 
power 

Full list of input 
variables 

PLR34-RD 3rd and 4th 
degree PR 

1st degree, 3rd and 4th 
power 

Reduced 
dimensionality 

MLP1 Multi degree PR (see appendix B) Reduced 
dimensionality 

MLP2 Multi degree PR (see appendix B) Reduced 
dimensionality 

MLP3 Multi degree PR (see appendix B) Reduced 
dimensionality 

MLP4 Multi degree PR (see appendix B) Reduced 
dimensionality  

Table 4 
Performance comparison of the ML-based PSDMs for ln(ρc).

Models Algorithm 
Annotation 

Considered input 
variables 

Prediction 
accuracy 

MSE 

M1 MLR Full list  0.751  0.608 
M2 FSR Reduced  0.747  0.658 
M3 LASSO Reduced  0.751  0.770 
M4 PLSR Full list  0.747  0.710 
M5 PCR Full list  0.714  0.816 
M6 BG Full list  0.858  0.197 
M7 BG-RD Reduced (insight 

from VS)  
0.845  0.234 

M8 LSB Full list  0.870  0.167 
M9 LSB-RD Reduced (insight 

from VS)  
0.844  0.239 

M10 RF Full list  0.852  0.213 
M11 RF-RD Reduced (insight 

from VS)  
0.832  0.275 

M12 GK Full list  0.905  0.089 
M13 GK-RD Reduced (insight 

from VS)  
0.757  0.580 

M14 PR2 Full list  0.725  0.739 
M15 PR2-RD Reduced (embedded 

VS)  
0.712  0.815 

M16 PR3 Full list  0.286  0.804 
M17 PR3-RD Reduced (embedded 

VS)  
0.700  0.885 

M18 PR4 Full list  0.690  0.940 
M19 PR4-RD Reduced (embedded 

VS)  
0.677  1.021 

M20 PR2INT Reduced (insight 
from VS)  

0.757  0.579 

M21 QPR Reduced (insight 
from VS)  

0.761  0.560 

M22 PLR2 Full list  0.754  0.595 
M23 PLR2-RD Reduced (embedded 

VS)  
0.745  0.639 

M24 PLR3 Full list  0.752  0.603 
M25 PLR3-RD Reduced (embedded 

VS)  
0.742  0.650 

M26 PLR4 Full list  0.750  0.615 
M27 PLR4-RD Reduced (embedded 

VS)  
0.748  0.623 

M28 PLR23 Full list  0.754  0.595 
M29 PLR23-RD Reduced (embedded 

VS)  
0.745  0.639 

M30 PLR234 Full list  0.754  0.594 
M31 PLR234-RD Reduced (embedded 

VS)  
0.745  0.639 

M32 PLR24 Full list  0.741  0.659 
M33 PLR24-RD Reduced (embedded 

VS)  
0.711  0.818 

M34 PLR34 Full list  0.743  0.646 
M35 PLR34-RD Reduced (insight 

from VS)  
0.720  0.769 

M36 MLP1 Reduced (insight 
from VS)  

0.765  0.541 

M37 MLP2 Reduced (insight 
from VS)  

0.769  0.524 

M38 MLP3 Reduced (insight 
from VS)  

0.766  0.537 

M39 MLP4 Reduced (insight 
from VS)  

0.781  0.471  
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demand are provided in Table 5 and Table D.1-D.3 (see Appendix D). As 
observed the ranking varies based on the seismic demand of interest. In 
general, the ensemble learning methods, Gaussian Kernel, and some of 
the polynomial models outperformed the linear model which indicates 
the nonlinearity in the relationship between the probabilistic seismic 
demands and the random variables. As the order of polynomial in
creases, the variance in the estimators also increases, and hence, not all 
polynomial models perform well. More particularly, the Gaussian Kernel 
and random forest were found as the superior ML algorithms in all cases. 
Although the full and reduced models developed by random forest 
performed well, the full Gaussian Kernel model performed better than 
the reduced model. 

4.3. Comparison with conventional model 

In order to compare the developed ML-based models with the 

conventional form of PSDM, models M40 and M41 are generated using 
respectively PGA and Sa(1.0 s) as the ground motion IM for the input 
variable in the regression model. As stated in the Introduction, re
searchers used various IMs in their proposed PSDMs due to the lack of 
consensus on a single IM for predicting the bridge demands. The pio
neering works investigated different IMs in developing PSDMs with 
respect to the metrics such as efficiency, practicality, sufficiency, and 
proficiency. Several studies (e.g., [23,26] tested IMs for portfolios of 
bridges that are found in HAZUS-MH and indicated that PGA and Sa(1.0 
s) are optimal IMs for the purpose of probabilistic seismic demand 
analysis. Since this study is focused on typical concrete box-girder 
highway bridges, PGA and Sa(1.0 s) are adopted here. 

According to the performance evaluation of the models presented in 
Fig. 4 and Fig. E.1 (see Appendix E), the ML-driven methods offer sig
nificant improvements in the predictive model performance. More spe
cifically, to estimate the column curvature ductility, the ML-based 

Fig. 3. Model performance comparison for predicting (a) ln(ρc) and (b) ln(δd).

Table 5 
The list of 10 best-performed ML-based models for each seismic demand model.  

ln(ρc) ln(δa)

Model Algorithm Type Number of input variables Accuracy (%) Model Algorithm Type Number of input variables Accuracy (%) 

M12 GK Full 34  90.46 M12 GK Full 34  82.15 
M8 LSB Full 34  86.96 M7 BG-RD Reduced 7  76.99 
M6 BG Full 34  85.82 M8 LSB Full 34  76.74 
M10 RF Full 34  85.25 M6 BG Full 34  76.41 
M7 BG-RD Reduced 6  84.55 M11 RF-RD Reduced 7  75.92 
M9 LSB-RD Reduced 6  84.39 M10 RF Full 34  75.33 
M11 RF-RD Reduced 6  83.24 M13 GK-RD Reduced 7  71.34 
M39 MLP4 Reduced 6  78.09 M24 PLR3 Full 34  71.19 
M37 MLP2 Reduced 6  76.88 M26 PLR4 Full 34  71.18 
M38 MLP3 Reduced 6  76.59 M22 PLR2 Full 34  70.93  
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models have at least 49% lower MSEs than the conventional PSDMs 
(Fig. 4). Comparing the conventional model with the 10 best-performed 
ML-based models to predict other seismic demands, Fig. E.1 indicates 
71–78%, 60–69%, and 64–93% reduction in the MSEs respective to the 
responses of the deck (a), foundation (b, c), and abutment (d, e, f). This 
implies that the ML-based models could better capture the complexity of 
the seismic demands. Besides improving the MSEs, the ML-based models 
propose more reliable predictions by incorporating significant sources of 
uncertainties (including material, geometric, structural, and ground 
motion) into the model. 

Fig. 5 displays the correlation between the predicted median seismic 
demands using PSDMs and the targeted responses that were obtained 
from the finite element dynamic analysis of bridges. As shown in Fig. 5. 
a, the ML-based results indicate that the predictions and target responses 
are mostly centered around the 1:1 line resulting in high values of R. In 
the case of predictions provided by the unidimensional model, differ
ences between the predicted responses and the target values appear to 
increase over the small and large responses. The higher R values of 
predicted responses using ML-based models and the lower MSEs indicate 
that the ML-based PSDMs are more generalizable than the unidimen
sional regression models. 

4.4. Machine-learning-based identification of significant variables 

Increasing the number of input variables in a regression model boosts 
model performance up to a specific point after which the performance 
remains constant or decreases as a result of the increasing complexity of 
the model (Fig. 6). Among the applied linear ML algorithms, only a few 
(FSR and LASSO) develop regression models based upon VS techniques 
that can identify the input variables with the highest influence on pre
dicting the seismic demand of bridges. Consequently, these approaches 

generate low dimensional models by eliminating the insignificant input 
variables from the regression model to minimize the MSE. Among the 
nonlinear approaches, RF provides a measure of the level of importance 
of each input variable in predicting the response. For example, Fig. 7 
displays a comparison of the importance levels of the modeling and 
structural characteristics in predicting the foundation rotation. 

In terms of evaluating the importance level of investigated input 
variables for the predictive models, different strategies are followed by 
the applied VS techniques. The FSR starts with zero input variables, and 
then, each variable is added to the model to determine its associated p- 
value. The variables are added to the model in the order that they have 
the smallest p-value or cause the highest increase in R2. This procedure 
is repeated until all features with significant p-values are added to the 
model and those variables with the lowest p-values are excluded. In 
Fig. 6(a), the sequence of the optimum variables is Sa (1.0 s), Foundation 
translational stiffness, Column height ratio, Reinforcement ratio, and 
PGA. In Fig. 6(b), the sequence of the optimum variables is Sa (1.0 s), 
Foundation rotational stiffness (longitudinal direction), Foundation 
rotational stiffness (translational direction), and Reinforcement ratio. 

LASSO and FSR perform the selection of variables in conjunction 
with creating the predictive model. More specifically, LASSO adds a 
regularization term to the objective function that eventually induces 
some coefficients to be equal to zero. Thereby, the input variables with 
non-zero coefficients are counted as the influential variables. Although 
FSR and LASSO provide the list of influential variables, they do not 
provide insight regarding the level of contribution of each variable in 
predicting the response. However, RF provides a measure of the level of 
importance of each variable in predicting the response. This measure is 
computed based on the sum of changes in the MSE of the predictions due 
to the splits of a particular variable in the growth of regression trees. 
This measure enables researchers to identify influential variables with 
the highest level of importance and also understand whether a particular 
influential variable has more/less impact on the response than the other 
influential variables. 

The accuracy and MSEs of the regression models developed by these 
three VS techniques were compared to determine the most efficient set 
of variables. It was noted that LASSO involved more variables to develop 
the model, whereas the other two techniques generated models with 
comparable performance and significantly fewer variables. As an 
example, LASSO, FSR and random forest developed models for the col
umn curvature ductility with prediction accuracy around 75%, 75%, 
83% and identified 27, 4 and 4 significant variables, respectively. 

The summary of the identified influential variables with the highest 
prediction power for the investigated seismic demands is provided in 
Table 6. For example, for predicting the column curvature ductility, the 
structural modeling parameters including the span length, column 
height, superstructure depth, reinforcement ratio, and foundation 
rotational stiffness were identified as the significant variables. This can 

Fig. 4. MSE comparison for the PSDM of ln(ρc)

Fig. 5. Comparison of the target response computed by finite element analysis and the predicted seismic demands (y1) using (a) GK-based PSDM (M12) and (b) the 
unidimensional regression models (M40). 
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be explained in terms of the relationship between these identified 
influential parameters and the columns’ structural characteristics since 
the strength and stiffness of the bridge columns are a function of the 
column height and reinforcement ratios. Besides, the high influence of 
span length on developing demand models could be associated with the 
direct impact of the bridge span length on the bridge system mass and 
the flexibility of the bridge superstructure. Moreover, it was observed 
that the abutment height and soil type significantly influence abutment 
demands because the force–displacement relationship of the abutments 
depends on these parameters. Besides, Sa(1.0 s) was found as the most 

important ground motion characteristic in the predictive model and was 
noted as the highest-ranked input variable for all seismic demands (e.g., 
Fig. 7). The higher importance of Sa(1.0 s) compared to the other IMs 
could be attributed to the mean fundamental period of the studied 
bridges which was 1.26 sec. The identified influential variables were 
used to develop most of the reduced dimensionality ML-based models. 

5. Conclusions 

Towards enhancing the reliability of fragility and resilience assess
ment of highway bridges, this study sought to improve probabilistic 
seismic demand models of bridge components. To this end, this study 
presented a systematic appraisal of a variety of ML algorithms with 
different degrees of interpretability and theoretical complexity. 
Thereby, the efficiency of 39 parametric and nonparametric ML algo
rithms, including multiparameter linear and multi-order regressions, 
ensemble learning methods, and Kernel-based algorithm, were explored. 
The models were evaluated in full and reduced formats by embedding 
ML-based variable selection techniques. 

Although recent years have seen an increasing number of studies in 
applying more methodical approaches for improving bridge PSDMs, 
most of them focused on 1st order multi-parameter linear regression and 
2nd order polynomial regression while the application of advanced and 
robust ML methods such as boosted tree algorithms and Gaussian Kernel 
requires further investigation. In addition, previous attempts were 
typically limited to regional-based bridge attributes and selective input 
variables corresponding to structural characteristics. Also, arbitrary 
fixed functional forms of PSDMs were considered, and the identification 
of influential parameters has been rarely conducted in previous at
tempts. Consequently, the produced PSDMs could include redundant 

Fig. 6. Variation of the prediction accuracy by changing the number of input variables in the FSR models for (a) ln(δf ) (with 5 optimum variables) and (b) ln(θf )

(with 4 optimum variables) – adding more variables beyond the optimum number does not significantly improve accuracy. 

Fig. 7. Comparison of the level of importance (obtained from Random Forest) of the input variables in developing the regression model corresponding to the 
response variable ln(θf ). 

Table 6 
Summary of the identification of significant variables.  

Seismic 
demand 

Significant variables 

ln(ρc) Span length, Column height, Superstructure Depth, Reinforcement 
ratio, Foundation rotational stiffness (translational direction), Sa 
(1.0 s) 

ln(δd) Span length, Column height, Deck width, Reinforcement ratio, 
Column height ratio, PGA, Sa (1.0 s) 

ln(δf ) Reinforcement ratio, Foundation translational stiffness, Column 
height ratio, PGA, Sa (1.0 s) 

ln(θf ) Reinforcement ratio, Foundation rotational stiffness (translational 
direction), Foundation rotational stiffness (longitudinal direction), 
Sa (1.0 s) 

ln(δa) Soil type, Superstructure Depth, Abutment height, Span ratio, 
Column height ratio, PGA, Sa (1.0 s) 

ln(δp) Span length, Superstructure Depth, Abutment height, Foundation 
rotational stiffness (translational direction), Foundation rotational 
stiffness (longitudinal direction), Damping, Sa (1.0 s), Sa (0.3 s) 

ln(δt) Span length, Superstructure Depth, Column height ratio, PGA, Sa 
(1.0 s)  
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variables that contribute to model complexity and overfitting which 
could alter the true relationship between the input parameters and the 
predicted seismic demands. 

The proposed ML-based approaches by this study have several ad
vantages compared with the traditional development of PSDMs. One of 
the main advantages of ML-based models is that they allow tracking the 
complex relationships between input variables and EDPs without being 
restricted to relatively simple functional forms as is the case in the 
conventional approaches. Besides, the implemented ML algorithms not 
only incorporate various random variables into the predictive model for 
the uncertainty treatment of material, geometric, structural, and ground 
motion parameters but also identify the most influential variables in 
predicting the demands to help to develop efficient and reliable models. 
Neglecting the uncertainty in the influential variables could lead to 
unreliable estimation of the seismic demands of the bridge components, 
while extraneous inputs increase model complexity and the chance of 
overfitting. In general, implementing variable selection techniques to 
find the optimum number of input variables improves the model fit, 
reduces the computation time, makes the model more interpretable, and 
could also be beneficial to improve the bridge database by giving insight 
on where to invest resources for updating the input parameters. In 
summary the findings of this study can be considered under two main 
categories based on the scope of applications. These categories include 
improving the prediction power of the seismic demand models and 
identifying the most influential predictors in the models. Improving the 
prediction power of PSDMs enhances the reliability of fragility, risk and 
resilience estimation of bridges and identifying influential parameters 
reduces computation time and complexity. The following remarks 
elaborate these findings:  

1) Improved predictive models for the seismic demands:  
• Comparison of the efficiency of the proposed ML-based models 

against the conventional probabilistic seismic demand model 
(PSDM) showed a significant performance improvement in terms 
of prediction power when the ML-based models were used. Over
all, the findings revealed that the proposed ML-based demand 
models provide a more reliable prediction of the different seismic 
demands of bridges and can be used in future studies that conduct 
performance-based assessments such as the formulation of more 
robust fragilities and reliability-based assessments.  

• Moreover, the ML-based models were ranked according to their 
prediction performance. It was observed that, due to the nonline
arity in the relationship between the EDPs and input variables, the 
ensemble learning methods, Gaussian Kernel, and some of the 
polynomial models outperformed the linear models. However, in 
most cases, the models generated by these two algorithms had 
lower MSEs and higher prediction accuracies than those produced 
by the polynomial models.  

• In general, the results suggest that Gaussian Kernel and Random 
Forest provide promising ML-based approaches for developing 
bridge PSDMs. In particular, the full Gaussian Kernel model and 
the full and reduced Random Forest models performed well in 
predicting all investigated EDPs.  

• It was notable that the performance of most of the reduced models, 
which could be more desirable for practical applications, was 
comparable to the performance of their corresponding full models.  

2) Identification of influential predictors:  
• Furthermore, by applying ML variable selection techniques 

(LASSO, forward stepwise regression, and random forest), the most 
influential input variables to explain the seismic demands were 
identified. It was noted that increasing the number of input vari
ables boosts model performance up to a specific point after which 
the performance remains constant or decreases as a result of the 
increasing complexity of the model. 

• EDPs associated with the column curvature ductility, the move
ments of the deck, foundation, and abutment were considered. The 

most influential variables for each EDP were summarized that are 
useful for future studies focused on performance-based assess
ments of bridge systems.  

• In particular, the spectral acceleration at 1.0 sec (Sa(1.0 s)) was 
identified as the most influential input variable in the context of 
the considered seismic demands and bridge classes. This highlights 
the importance of an adequate estimation of intensity measures in 
the seismic assessment of bridges.  

• The results indicated that for the column curvature ductility, the 
structural modeling parameters such as the span length, column 
height, superstructure depth, reinforcement ratio, and foundation 
rotational stiffness showed the highest prediction power. This can 
be explained in terms of the relationship between these identified 
influential parameters and the columns’ structural characteristics 
since the strength and stiffness of the bridge columns are a function 
of the column height and reinforcement ratios. Besides, the high 
influence of span length on developing demand models could be 
associated with the direct impact of the bridge span length on the 
bridge system mass and the flexibility of the bridge superstructure. 
Moreover, it was observed that the abutment height and soil type 
significantly influence abutment demands because the force
–displacement relationship of the abutments depends on these 
parameters. 

Although the results and methodologies presented in this study pave 
the path towards the application of ML approaches to have a more 
reliable and efficient estimation of the demands during seismic events, 
the limitations of this study can be addressed in future works. While this 
study focused on the class of concrete box-girder bridges as the majority 
of highway bridges in the West Coast of the U.S., future work will 
investigate if similar conclusions about the choice of best-performed ML 
algorithms and influential variables apply to other bridge types (e.g., T- 
girder, I-girder, slab). While this study revealed the validity of a broad 
category of ML approaches to improve bridge PSDMs, the forthcoming 
study will inspect whether different emerging types of neural network 
[45] approaches have superior predictive capabilities as the applied 
approaches in this study. 
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